Skip to main content

A python package for astronomical calculations

Project description

Author: Behrouz Safari
License: MIT

hypatie

A python package for astronomical calculations

Installation

Install the latest version of hypatie from PyPI:

pip install hypatie

Requirements are numpy, pandas and matplotlib.

Quick start

Let's get the positions of the sun between two times:

import hypatie as hp

t1 = '2021-03-20 08:00:00'
t2 = '2021-03-20 10:00:00'

If you want the apparent RA and DEC of the Sun with respect to Earth's center (geocentric):

obs = hp.Observer('sun', t1, t2, step=5)

Now you can access the time intervals with .time attribute:

print(obs.time)

[datetime.datetime(2021, 3, 20, 8, 0)
 datetime.datetime(2021, 3, 20, 8, 24)
 datetime.datetime(2021, 3, 20, 8, 48)
 datetime.datetime(2021, 3, 20, 9, 12)
 datetime.datetime(2021, 3, 20, 9, 36)
 datetime.datetime(2021, 3, 20, 10, 0)]

To acces the position you can use obs.pos, obs.ra, or obs.dec:

print(obs.pos)

[[ 3.59938235e+02 -2.66803120e-02]
 [ 3.59953431e+02 -2.00920520e-02]
 [ 3.59968627e+02 -1.35038600e-02]
 [ 3.59983823e+02 -6.91573600e-03]
 [ 3.59999018e+02 -3.27680000e-04]
 [ 1.42132560e-02  6.26030600e-03]]

The first column in the above array is RA and the second column is DEC.

It is possible to get the apparent RA & DEC of a targer with respect to a specified location on the surface of a body. For example, if you want to get the apparent RA & DEC of the Sun for the Eiffel Tower :

obs = hp.Observer('sun', t1, t2, step=5, center='2.2945,48.8584,300@399')

Note that 2.2945 is the longtitude, 48.8584 is the latitude and 300 (meters) is the elevation of the Eiffel Tower. We have specified '@399' at the end which means that this coordinates is situated on the Earth (399 is the Earth's code).

You can request the cartesian positions (x,y,z) of a target with Vector class.

vec = hp.Vector('sun', t1, t2, step=5)

As with the Observer class, there are two attributes .time and .pos for Vector class. Note that when creating a Vector class, you have .x, .y and .z attributes instead of .ra and .dec.

For both Vector and Observer classes you can pass a single time to get position/state of a body at a single time:

vec = hp.Vector('sun', t1)

Both Vector and Observer classes have .plot() method.

# plot polar coordinates
obs.plot()
# plot cartesian coordinates
vec.plot()

Example: animating James Webb Space Telescope

In addition to .plot() method of Vector and Observer classes, there's a play() function that you can pass it a list of Vector objects as well as some other lists as shown in the example below:

import hypatie as hp
import matplotlib.pyplot as plt

t1 = '2018-10-01 14:18:00'
t2 = '2024-12-31 12:18:00'

# get positions with respect to the barycenter of earth-moon
earth = hp.Vector('399', t1, t2, center='500@3', step=1000)
moon = hp.Vector('301', t1, t2, center='500@3', step=1000)
jwst = hp.Vector('-170', t1, t2, center='500@3', step=1000)

bodies = [earth, moon, jwst]
names = ['Earth', 'Moon', 'James Webb']
colors = ['b','g','r']
sizes = [20, 8, 3]

# play the animation
anim = hp.play(bodies, names, colors, sizes)
plt.show()

Deep sky

You can download data from astronomical catalogues:

cat = hp.Catalogue('gaia2')
data, meta = cat.download()

or, plot the star chart for your location:

ax = hp.star_chart(lon=2.2945, lat=48.8584)
plt.show()

or, use a virtual telescope:

target = (10.6847,41.2687) # az,alt of a point in the sky
paris = (2.2945, 48.8584)  # location of observer

# get image with 3 degrees field of view
tel = hp.Telescope(target_loc=target, obs_loc=paris, fov=3)
tel.show()

Project details


Release history Release notifications | RSS feed

This version

2.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypatie-2.9.0.tar.gz (52.2 kB view details)

Uploaded Source

Built Distribution

hypatie-2.9.0-py3-none-any.whl (52.3 kB view details)

Uploaded Python 3

File details

Details for the file hypatie-2.9.0.tar.gz.

File metadata

  • Download URL: hypatie-2.9.0.tar.gz
  • Upload date:
  • Size: 52.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.0

File hashes

Hashes for hypatie-2.9.0.tar.gz
Algorithm Hash digest
SHA256 e28e40f7cf16b51caa358b94c98a1b9ce01f3e8578760a55c11e809738cf1a40
MD5 b3bbddd70e30fc858ce04fb8ac5e8d39
BLAKE2b-256 32b5b18aaf438755bdcc440722325f01f3c7c2267d7e5305e5da73741b6d1a9a

See more details on using hashes here.

File details

Details for the file hypatie-2.9.0-py3-none-any.whl.

File metadata

  • Download URL: hypatie-2.9.0-py3-none-any.whl
  • Upload date:
  • Size: 52.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.0

File hashes

Hashes for hypatie-2.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f63ed5fa3beea1a9cf3814ea16414cd3af6588f3d46a3da3a84c00cd65ab3ad8
MD5 548a1757cec29ecd8383fde070b2627d
BLAKE2b-256 73f46e4d09ab7b3864d1c5d6687d34897d238e2c0ebbabe169d1b02c7824e092

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page