Skip to main content

A hyperparameter optimization toolbox for convenient and fast prototyping

Project description

Hyperactive

A hyperparameter optimization toolbox for convenient and fast prototyping


Code style: black


Overview | Performance | Installation | Examples | Advanced Features | Hyperactive API



Overview

  • Optimize hyperparameters of machine- or deep-learning models, using a simple API.
  • Choose from a variety of different optimization techniques to improve your model.
  • Never lose progress of previous optimizations: Just pass one or more models as start points and continue optimizing.
  • Use transfer learning during the optimization process to build a more accurate model, while saving training and optimization time.
  • Utilize multiprocessing for machine learning or your gpu for deep learning models.
Optimization Techniques Supported Packages
Local Search:
  • Hill Climbing
  • Stochastic Hill Climbing
  • Tabu Search
Random Methods:
  • Random Search
  • Random Restart Hill Climbing
  • Random Annealing
Markov Chain Monte Carlo:
  • Simulated Annealing
  • Stochastic Tunneling
  • Parallel Tempering
Population Methods:
  • Particle Swarm Optimizer
  • Evolution Strategy
Sequential Methods:
  • Bayesian Optimization
Machine Learning:
  • Scikit-learn
  • XGBoost
Deep Learning:
  • Keras
Distribution:
  • Multiprocessing

Performance

The bar chart below shows, that the optimization process itself represents only a small fraction (<0.6%) of the computation time. The 'No Opt'-bar shows the training time of a default Gradient-Boosting-Classifier normalized to 1. The other bars show the computation time relative to 'No Opt'. Each optimizer did 30 runs of 300 iterations, to get a good statistic.


Installation

Hyperactive is developed and tested in python 3 and is available on PyPI:

pip install hyperactive

Examples

Basic sklearn example:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from hyperactive import SimulatedAnnealingOptimizer

iris_data = load_iris()
X = iris_data.data
y = iris_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the model and hyperparameter search space
search_config = {
    "sklearn.ensemble.RandomForestClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": [3, 4, 5, 6],
        "criterion": ["gini", "entropy"],
        "min_samples_split": range(2, 21),
        "min_samples_leaf": range(2, 21),
    }
}

Optimizer = SimulatedAnnealingOptimizer(search_config, n_iter=100, n_jobs=4)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

# predict from test data
prediction = Optimizer.predict(X_test)

# calculate accuracy score
score = Optimizer.score(X_test, y_test)

Example with a multi-layer-perceptron in keras:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from hyperactive import ParticleSwarmOptimizer

breast_cancer_data = load_breast_cancer()

X = breast_cancer_data.data
y = breast_cancer_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the structure of the model and the search space in each layer
search_config = {
    "keras.compile.0": {"loss": ["binary_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [3], "batch_size": [100], "verbose": [0]},
    "keras.layers.Dense.1": {
        "units": range(5, 15),
        "activation": ["relu"],
        "kernel_initializer": ["uniform"],
    },
    "keras.layers.Dense.2": {
        "units": range(5, 15),
        "activation": ["relu"],
        "kernel_initializer": ["uniform"],
    },
    "keras.layers.Dense.3": {"units": [1], "activation": ["sigmoid"]},
}

Optimizer = ParticleSwarmOptimizer(
    search_config, n_iter=3, metric=["mean_absolute_error"], verbosity=0
)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

Example with a convolutional neural network in keras:

import numpy as np

from keras.datasets import mnist
from keras.utils import to_categorical

from hyperactive import RandomSearchOptimizer

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)


# this defines the structure of the model and the search space in each layer
search_config = {
    "keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [20], "batch_size": [500], "verbose": [2]},
    "keras.layers.Conv2D.1": {
        "filters": [32, 64, 128],
        "kernel_size": range(3, 4),
        "activation": ["relu"],
        "input_shape": [(28, 28, 1)],
    },
    "keras.layers.MaxPooling2D.2": {"pool_size": [(2, 2)]},
    "keras.layers.Conv2D.3": {
        "filters": [16, 32, 64],
        "kernel_size": [3],
        "activation": ["relu"],
    },
    "keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
    "keras.layers.Flatten.5": {},
    "keras.layers.Dense.6": {"units": range(30, 200, 10), "activation": ["softmax"]},
    "keras.layers.Dropout.7": {"rate": list(np.arange(0.4, 0.8, 0.1))},
    "keras.layers.Dense.8": {"units": [10], "activation": ["softmax"]},
}

Optimizer = RandomSearchOptimizer(search_config, n_iter=20)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

# predict from test data
prediction = Optimizer.predict(X_test)

# calculate accuracy score
score = Optimizer.score(X_test, y_test)


Advanced Features

The features listed below can be activated during the instantiation of the optimizer (see API) and works with every optimizer in the hyperactive package.

Memory

After the evaluation of a model the position (in the hyperparameter search dictionary) and the cross-validation score are written to a dictionary. If the optimizer tries to evaluate this position again it can quickly lookup if a score for this position is present and use it instead of going through the extensive training and prediction process.

Scatter-Initialization

This technique was inspired by the 'Hyperband Optimization' and aims to find a good initial position for the optimization. It does so by evaluating n random positions with a training subset of 1/n the size of the original dataset. The position that achieves the best score is used as the starting position for the optimization.

Multiprocessing

The multiprocessing in hyperactive works by creating additional searches, that run in parallel without any shared memory. This provides the possibility of hyperparameter-tuning of different models at the same time. If one single model should be tuned as fast as possible n_jobs in the optimizer should be set to '1', while n_jobs (of the model) in the search_config should be set to '-1'.

Two searches with eight cpu-cores:

import numpy as np

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from hyperactive import RandomSearchOptimizer

iris_data = load_iris()
X = iris_data.data
y = iris_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the model and hyperparameter search space
search_config = {
    "sklearn.ensemble.RandomForestClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": [3, 4, 5, 6],
        "criterion": ["gini", "entropy"],
        "n_jobs": [4],
    },
    "sklearn.ensemble.GradientBoostingClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": range(1, 11),
        "min_samples_split": range(2, 21),
        "n_jobs": [4],
    },
}

Optimizer = RandomSearchOptimizer(search_config, n_iter=300, n_jobs=2, verbosity=0)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

One search with all cpu-cores:

import numpy as np

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from hyperactive import RandomSearchOptimizer

iris_data = load_iris()
X = iris_data.data
y = iris_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the model and hyperparameter search space
search_config = {
    "sklearn.ensemble.RandomForestClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": [3, 4, 5, 6],
        "criterion": ["gini", "entropy"],
        "n_jobs": [-1],
    },
}

Optimizer = RandomSearchOptimizer(search_config, n_iter=300, n_jobs=1, verbosity=0)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

Multiple searches with all cpu-cores:

import numpy as np

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from hyperactive import RandomSearchOptimizer

iris_data = load_iris()
X = iris_data.data
y = iris_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the model and hyperparameter search space
search_config = {
    "sklearn.ensemble.RandomForestClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": [3, 4, 5, 6],
        "criterion": ["gini", "entropy"],
        "min_samples_split": range(2, 21),
        "min_samples_leaf": range(2, 21),
    },
    "sklearn.neighbors.KNeighborsClassifier": {
        "n_neighbors": range(1, 10),
        "weights": ["uniform", "distance"],
        "p": [1, 2],
    },
    "sklearn.ensemble.GradientBoostingClassifier": {
        "n_estimators": range(10, 100, 10),
        "learning_rate": [1e-3, 1e-2, 1e-1, 0.5, 1.0],
        "max_depth": range(1, 11),
        "min_samples_split": range(2, 21),
        "min_samples_leaf": range(1, 21),
        "subsample": np.arange(0.05, 1.01, 0.05),
        "max_features": np.arange(0.05, 1.01, 0.05),
    },
    "sklearn.tree.DecisionTreeClassifier": {
        "criterion": ["gini", "entropy"],
        "max_depth": range(1, 11),
        "min_samples_split": range(2, 21),
        "min_samples_leaf": range(1, 21),
    },
}

Optimizer = RandomSearchOptimizer(search_config, n_iter=300, n_jobs=-1, verbosity=0)

Transfer-Learning

In the current implementation transfer-learning works by using a predefined model (with optional pretrained weights) provided by the keras package. The import path can be inserted as a layer (with its parameters in an sub-dictionary), like in a regular search dictionary. The following snippet provides an example:

Transfer-learning example:

from keras.datasets import cifar10
from keras.utils import to_categorical

from hyperactive import SimulatedAnnealingOptimizer

(X_train, y_train), (X_test, y_test) = cifar10.load_data()

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)


# this defines the structure of the model and the search space in each layer
search_config = {
    "keras.compile.0": {"loss": ["binary_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [1], "batch_size": [300], "verbose": [0]},
    # just add the pretrained model as a layer like this:
    "keras.applications.MobileNet.1": {
        "weights": ["imagenet"],
        "input_shape": [(32, 32, 3)],
        "include_top": [False],
    },
    "keras.layers.Flatten.2": {},
    "keras.layers.Dense.3": {
        "units": range(5, 15),
        "activation": ["relu"],
        "kernel_initializer": ["uniform"],
    },
    "keras.layers.Dense.4": {"units": [10], "activation": ["sigmoid"]},
}


Optimizer = SimulatedAnnealingOptimizer(
    search_config, n_iter=3, warm_start=False, verbosity=0
)

Warm-Start

When a search is finished the warm-start-dictionary for the best position in the hyperparameter search space (and its metric) is printed in the command line (at verbosity=1). If multiple searches ran in parallel the warm-start-dictionaries are sorted by the best metric in decreasing order. If the start position in the warm-start-dictionary is not within the search space defined in the search_config an error will occure.

Warm-start example for sklearn model:

start_point = {
    "sklearn.ensemble.RandomForestClassifier.0": {
        "n_estimators": [30],
        "max_depth": [6],
        "criterion": ["entropy"],
        "min_samples_split": [12],
        "min_samples_leaf": [16],
    },
    "sklearn.ensemble.RandomForestClassifier.1": {
        "n_estimators": [50],
        "max_depth": [3],
        "criterion": ["entropy"],
    },
}

Warm-start example for keras model (cnn):

start_point = {
    "keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [3], "batch_size": [500], "verbose": [0]},
    "keras.layers.Conv2D.1": {
        "filters": [64],
        "kernel_size": [3],
        "activation": ["relu"],
        "input_shape": [(28, 28, 1)],
    },
    "keras.layers.MaxPooling2D.2": {"pool_size": [(2, 2)]},
    "keras.layers.Conv2D.3": {
        "filters": [32],
        "kernel_size": [3],
        "activation": ["relu"],
        "input_shape": [(28, 28, 1)],
    },
    "keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
    "keras.layers.Conv2D.5": {
        "filters": [32],
        "kernel_size": [3],
        "activation": ["relu"],
        "input_shape": [(28, 28, 1)],
    },
    "keras.layers.MaxPooling2D.6": {"pool_size": [(2, 2)]},
    "keras.layers.Flatten.7": {},
    "keras.layers.Dense.8": {"units": [50], "activation": ["softmax"]},
    "keras.layers.Dropout.9": {"rate": [0.4]},
"keras.layers.Dense.10": {"units": [10], "activation": ["softmax"]},
}


Hyperactive API

Classes:

HillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, r=1e-6)
StochasticHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
TabuOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, tabu_memory=[3, 6, 9])

RandomSearchOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
RandomRestartHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_restarts=10)
RandomAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=100, t_rate=0.98)

SimulatedAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98)
StochasticTunnelingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, gamma=1)
ParallelTemperingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, system_temps=[0.1, 0.2, 0.01], n_swaps=10)

ParticleSwarmOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_part=4, w=0.5, c_k=0.5, c_s=0.9)
EvolutionStrategyOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, individuals=10, mutation_rate=0.7, crossover_rate=0.3)

BayesianOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)

General positional argument:

Argument Type Description
search_config dict hyperparameter search space to explore by the optimizer
n_iter int number of iterations to perform

General keyword arguments:

Argument Type Default Description
metric str "accuracy" metric for model evaluation
n_jobs int 1 number of jobs to run in parallel (-1 for maximum)
cv int 5 cross-validation
verbosity int 1 Shows model and metric information
random_state int None The seed for random number generator
warm_start dict None Hyperparameter configuration to start from
memory bool True Stores explored evaluations in a dictionary to save computing time
scatter_init int False Chooses better initial position by training on multiple random positions with smaller training dataset (split into int subsets)

Specific keyword arguments (hill climbing):

Argument Type Default Description
eps int 1 epsilon

Specific keyword arguments (stochastic hill climbing):

Argument Type Default Description
eps int 1 epsilon
r float 1e-6 acceptance factor

Specific keyword arguments (tabu search):

Argument Type Default Description
eps int 1 epsilon
tabu_memory list [3, 6, 9] length of short/mid/long-term memory

Specific keyword arguments (random restart hill climbing):

Argument Type Default Description
eps int 1 epsilon
n_restarts int 10 number of restarts

Specific keyword arguments (random annealing):

Argument Type Default Description
eps int 100 epsilon
t_rate float 0.98 cooling rate

Specific keyword arguments (simulated annealing):

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate

Specific keyword arguments (stochastic tunneling):

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate
gamma float 1 tunneling factor

Specific keyword arguments (parallel tempering):

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate
system_temps list [0.1, 0.2, 0.01] initial temperatures (number of elements defines number of systems)
n_swaps int 10 number of swaps

Specific keyword arguments (particle swarm optimization):

Argument Type Default Description
n_part int 1 number of particles
w float 0.5 intertia factor
c_k float 0.8 cognitive factor
c_s float 0.9 social factor

Specific keyword arguments (evolution strategy optimization):

Argument Type Default Description
individuals int 10 number of individuals
mutation_rate float 0.7 mutation rate
crossover_rate float 0.3 crossover rate

General methods:

fit(self, X_train, y_train)
Argument Type Description
X_train array-like training input features
y_train array-like training target
predict(self, X_test)
Argument Type Description
X_test array-like testing input features
score(self, X_test, y_test)
Argument Type Description
X_test array-like testing input features
y_test array-like true values
export(self, filename)
Argument Type Description
filename str file name and path for model export

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

hyperactive-0.4.0-py3-none-any.whl (32.4 kB view details)

Uploaded Python 3

File details

Details for the file hyperactive-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: hyperactive-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 32.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.8

File hashes

Hashes for hyperactive-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5457dbddb10a8a77fcad602c1529e3a0ff5245fd588b9cb4e38af569855e33b3
MD5 2b3cf055a05cf3ca6b92ddc5f933dacd
BLAKE2b-256 4863295d6b9ef6f5e002761e33ecd51dcf6a252373f6006809b4a646ba2a91e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page