Skip to main content

A hyperparameter optimization toolbox for convenient and fast prototyping

Project description

A hyperparameter optimization toolbox for convenient and fast prototyping



Overview | Performance | Installation | Examples | Hyperactive API | License



Overview

  • Optimize hyperparameters of machine- or deep-learning models, using a simple API.
  • Choose from a variety of different optimization techniques to improve your model.
  • Utilize advanced features to improve the performance of all optimization techniques.
Optimization Techniques Supported Packages Advanced Features
Local Search:
  • Hill Climbing
  • Stochastic Hill Climbing
  • Tabu Search
Random Methods:
  • Random Search
  • Random Restart Hill Climbing
  • Random Annealing
Markov Chain Monte Carlo:
  • Simulated Annealing
  • Stochastic Tunneling
  • Parallel Tempering
Population Methods:
  • Particle Swarm Optimizer
  • Evolution Strategy
Sequential Methods:
  • Bayesian Optimization
Machine Learning:
  • Scikit-learn
  • XGBoost
  • LightGBM
  • CatBoost
Deep Learning:
  • Keras
Distribution:
  • Multiprocessing
Position initialization:
  • Scatter initialization
  • Warm-start
Resources allocation:
  • Memory
Weight initialization:
  • Transfer-learning

Performance

The bar chart below shows, that the optimization process itself represents only a small fraction (<0.6%) of the computation time. The 'No Opt'-bar shows the training time of a default Gradient-Boosting-Classifier normalized to 1. The other bars show the computation time relative to 'No Opt'. Each optimizer did 30 runs of 300 iterations, to get a good statistic.


Installation

Hyperactive is developed and tested in python 3:

https://pypi.org/project/hyperactive https://github.com/SimonBlanke/Hyperactive/graphs/contributors https://github.com/SimonBlanke/Hyperactive/commits/master


Hyperactive is available on PyPi:

https://pypi.python.org/pypi/hyperactive https://pypi.python.org/pypi/hyperactive

pip install hyperactive

Examples

Basic sklearn example:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from hyperactive import SimulatedAnnealingOptimizer

iris_data = load_iris()
X = iris_data.data
y = iris_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the model and hyperparameter search space
search_config = {
    "sklearn.ensemble.RandomForestClassifier": {
        "n_estimators": range(10, 100, 10),
        "max_depth": [3, 4, 5, 6],
        "criterion": ["gini", "entropy"],
        "min_samples_split": range(2, 21),
        "min_samples_leaf": range(2, 21),
    }
}

Optimizer = SimulatedAnnealingOptimizer(search_config, n_iter=100, n_jobs=4)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

# predict from test data
prediction = Optimizer.predict(X_test)

# calculate accuracy score
score = Optimizer.score(X_test, y_test)

Example with a multi-layer-perceptron in keras:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from hyperactive import ParticleSwarmOptimizer

breast_cancer_data = load_breast_cancer()

X = breast_cancer_data.data
y = breast_cancer_data.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# this defines the structure of the model and the search space in each layer
search_config = {
    "keras.compile.0": {"loss": ["binary_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [3], "batch_size": [100], "verbose": [0]},
    "keras.layers.Dense.1": {
        "units": range(5, 15),
        "activation": ["relu"],
        "kernel_initializer": ["uniform"],
    },
    "keras.layers.Dense.2": {
        "units": range(5, 15),
        "activation": ["relu"],
        "kernel_initializer": ["uniform"],
    },
    "keras.layers.Dense.3": {"units": [1], "activation": ["sigmoid"]},
}

Optimizer = ParticleSwarmOptimizer(
    search_config, n_iter=3, metric=["mean_absolute_error"], verbosity=0
)
# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

Example with a convolutional neural network in keras:

import numpy as np

from keras.datasets import mnist
from keras.utils import to_categorical

from hyperactive import RandomSearchOptimizer

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 28, 28, 1)
X_test = X_test.reshape(10000, 28, 28, 1)

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)


# this defines the structure of the model and the search space in each layer
search_config = {
    "keras.compile.0": {"loss": ["categorical_crossentropy"], "optimizer": ["adam"]},
    "keras.fit.0": {"epochs": [20], "batch_size": [500], "verbose": [2]},
    "keras.layers.Conv2D.1": {
        "filters": [32, 64, 128],
        "kernel_size": range(3, 4),
        "activation": ["relu"],
        "input_shape": [(28, 28, 1)],
    },
    "keras.layers.MaxPooling2D.2": {"pool_size": [(2, 2)]},
    "keras.layers.Conv2D.3": {
        "filters": [16, 32, 64],
        "kernel_size": [3],
        "activation": ["relu"],
    },
    "keras.layers.MaxPooling2D.4": {"pool_size": [(2, 2)]},
    "keras.layers.Flatten.5": {},
    "keras.layers.Dense.6": {"units": range(30, 200, 10), "activation": ["softmax"]},
    "keras.layers.Dropout.7": {"rate": list(np.arange(0.4, 0.8, 0.1))},
    "keras.layers.Dense.8": {"units": [10], "activation": ["softmax"]},
}

Optimizer = RandomSearchOptimizer(search_config, n_iter=20)

# search best hyperparameter for given data
Optimizer.fit(X_train, y_train)

# predict from test data
prediction = Optimizer.predict(X_test)

# calculate accuracy score
score = Optimizer.score(X_test, y_test)


Hyperactive API

Classes:

HillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, r=1e-6)
StochasticHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
TabuOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, tabu_memory=[3, 6, 9])

RandomSearchOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)
RandomRestartHillClimbingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_restarts=10)
RandomAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=100, t_rate=0.98)

SimulatedAnnealingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98)
StochasticTunnelingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, gamma=1)
ParallelTemperingOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, eps=1, t_rate=0.98, n_neighbours=1, system_temps=[0.1, 0.2, 0.01], n_swaps=10)

ParticleSwarmOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, n_part=4, w=0.5, c_k=0.5, c_s=0.9)
EvolutionStrategyOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False, individuals=10, mutation_rate=0.7, crossover_rate=0.3)

BayesianOptimizer(search_config, n_iter, metric="accuracy", n_jobs=1, cv=5, verbosity=1, random_state=None, warm_start=False, memory=True, scatter_init=False)

General positional argument:

Argument Type Description
search_config dict hyperparameter search space to explore by the optimizer
n_iter int number of iterations to perform

General keyword arguments:

Argument Type Default Description
metric str "accuracy" metric for model evaluation
n_jobs int 1 number of jobs to run in parallel (-1 for maximum)
cv int 5 cross-validation
verbosity int 1 Shows model and metric information
random_state int None The seed for random number generator
warm_start dict None Hyperparameter configuration to start from
memory bool True Stores explored evaluations in a dictionary to save computing time
scatter_init int False Chooses better initial position by training on multiple random positions with smaller training dataset (split into int subsets)

Specific keyword arguments:

Hill Climbing

Argument Type Default Description
eps int 1 epsilon

Stochastic Hill Climbing

Argument Type Default Description
eps int 1 epsilon
r float 1e-6 acceptance factor

Tabu Search

Argument Type Default Description
eps int 1 epsilon
tabu_memory list [3, 6, 9] length of short/mid/long-term memory

Random Restart Hill Climbing

Argument Type Default Description
eps int 1 epsilon
n_restarts int 10 number of restarts

Random Annealing

Argument Type Default Description
eps int 100 epsilon
t_rate float 0.98 cooling rate

Simulated Annealing

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate

Stochastic Tunneling

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate
gamma float 1 tunneling factor

Parallel Tempering

Argument Type Default Description
eps int 1 epsilon
t_rate float 0.98 cooling rate
system_temps list [0.1, 0.2, 0.01] initial temperatures (number of elements defines number of systems)
n_swaps int 10 number of swaps

Particle Swarm Optimization

Argument Type Default Description
n_part int 1 number of particles
w float 0.5 intertia factor
c_k float 0.8 cognitive factor
c_s float 0.9 social factor

Evolution Strategy

Argument Type Default Description
individuals int 10 number of individuals
mutation_rate float 0.7 mutation rate
crossover_rate float 0.3 crossover rate

Bayesian Optimization

Argument Type Default Description
kernel class Matern Kernel used for the gaussian process

General methods:

fit(self, X_train, y_train)
Argument Type Description
X_train array-like training input features
y_train array-like training target
predict(self, X_test)
Argument Type Description
X_test array-like testing input features
score(self, X_test, y_test)
Argument Type Description
X_test array-like testing input features
y_test array-like true values
export(self, filename)
Argument Type Description
filename str file name and path for model export

Available Metrics:

Scores Losses
accuracy_score brier_score_loss
balanced_accuracy_score log_loss
average_precision_score max_error
f1_score mean_absolute_error
recall_score mean_squared_error
jaccard_score mean_squared_log_error
roc_auc_score median_absolute_error
explained_variance_score

License

https://github.com/SimonBlanke/Hyperactive/blob/master/LICENSE

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

hyperactive-0.4.1.4-py3-none-any.whl (51.7 kB view details)

Uploaded Python 3

File details

Details for the file hyperactive-0.4.1.4-py3-none-any.whl.

File metadata

  • Download URL: hyperactive-0.4.1.4-py3-none-any.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for hyperactive-0.4.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f8c8d694021d4eaecf720663bc672a2a993b28b24c8f5807270f3a4f572f6d23
MD5 4fbcfbaae1401388784b824ead480c46
BLAKE2b-256 70caf5589e4ccc5c2c8136d54a729d867fd27e0d10edf007e28711e6f422fd47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page