Skip to main content

Constitutive hyperelastic material formulations for FElupe

Project description

Constitutive hyperelastic material formulations for FElupe.

PyPI version shields.io License: GPL v3 Made with love in Graz (Austria) codecov DOI Codestyle black Documentation Status PDF Documentation

This package provides the essential building blocks for constitutive hyperelastic material formulations. This includes material behaviour-independent spaces and frameworks as well as material behaviour-dependent model formulations.

Spaces (hyperelastic.spaces) are full or partial deformations on which a given material formulation should be projected to, e.g. to the distortional (part of the deformation) space. Generalized Total-Lagrange Frameworks (hyperelastic.frameworks) for isotropic hyperelastic material formulations based on the invariants of the right Cauchy-Green deformation tensor and the principal stretches enable a clean coding of isotropic material formulations.

The hyperelastic.math-module provides helpers in reduced vector (Voigt) storage for symmetric three-dimensional second-order tensors along with a matrix storage for (at least minor) symmetric three-dimensional fourth-order tensors. Shear terms are not doubled for strain-like tensors, instead all math operations take care of the reduced vector storage.

$$ \boldsymbol{C} = \begin{bmatrix} C_{11} & C_{22} & C_{33} & C_{12} & C_{23} & C_{13} \end{bmatrix}^T $$

Installation

Install Python, fire up 🔥 a terminal and run 🏃

pip install hyperelastic

Usage

Material model formulations have to be created as classes with methods for the evaluation of the gradient (stress) and the hessian (elasticity) of the strain energy function. It depends on the framework which derivatives have to be defined, e.g. the derivatives w.r.t. the invariants of the right Cauchy-Green deformation tensor or w.r.t. the principal stretches. An instance of a Framework has to be finalized by the application on a Space.

Note Define your own material model formulation with manual, automatic or symbolic differentiation with the help of your favourite package, e.g. PyTorch, JAX, Tensorflow, TensorTRAX, SymPy, etc.

First, let's import hyperelastic (and its math module).

import hyperelastic as hel
import hyperelastic.math as hm

Invariant-based material formulations

A minimal template for an invariant-based material formulation applied on the distortional space:

class MyInvariantsModel:
    def gradient(self, I1, I2, I3, statevars):
        """The gradient as the partial derivative of the strain energy function w.r.t.
        the invariants of the right Cauchy-Green deformation tensor."""

        return dWdI1, dWdI2, dWdI3, statevars

    def hessian(self, I1, I2, I3, statevars_old):
        """The hessian as the second partial derivatives of the strain energy function
        w.r.t. the invariants of the right Cauchy-Green deformation tensor."""

        return d2WdI1I1, d2WdI2I2, d2WdI3I3, d2WdI1I2, d2WdI2I3, d2WdI1I3


model = MyInvariantsModel()
framework = hel.InvariantsFramework(model)
umat = hel.DistortionalSpace(framework)

Available isotropic hyperelastic invariant-based material formulations

The typical polynomial-based material formulations (Neo-Hooke, Mooney-Rivlin, Yeoh) are all available as submodels of the third order deformation material formulation.

PyTorch

Principal stretch-based material formulations

A minimal template for a principal stretch-based material formulation applied on the distortional space:

class MyStretchesModel:
    def gradient(self, λ, statevars):
        """The gradient as the partial derivative of the strain energy function w.r.t.
        the principal stretches."""

        return [dWdλ1, dWdλ2, dWdλ3], statevars

    def hessian(self, λ, statevars_old):
        """The hessian as the second partial derivatives of the strain energy function
        w.r.t. the principal stretches."""

        return d2Wdλ1dλ1, d2Wdλ2dλ2, d2Wdλ3dλ3, d2Wdλ1dλ2, d2Wdλ2dλ3, d2Wdλ1dλ3


model = MyStretchesModel()
framework = hel.StretchesFramework(model)
umat = hel.DistortionalSpace(framework)

Available isotropic hyperelastic stretch-based material formulations

Lab

In the Lab, Simulations on homogeneous load cases provide a visualization of the material response behaviour.

import numpy as np
import hyperelastic

stretch = np.linspace(0.7, 2.5, 181)
parameters = {"C10": 0.3, "C01": 0.2}

def material(C10, C01):
    tod = hyperelastic.models.invariants.ThirdOrderDeformation(C10=C10, C01=C01)
    framework = hyperelastic.InvariantsFramework(tod)
    return hyperelastic.DeformationSpace(framework)

ux = hyperelastic.lab.Simulation(
    loadcase=hyperelastic.lab.Uniaxial(label="uniaxial"),
    stretch=np.linspace(0.7, 2.5),
    material=material,
    labels=parameters.keys(),
    parameters=parameters.values(),
)

ps = hyperelastic.lab.Simulation(
    loadcase=hyperelastic.lab.Planar(label="planar"),
    stretch=np.linspace(1.0, 2.5),
    material=material,
    labels=parameters.keys(),
    parameters=parameters.values(),
)

bx = hyperelastic.lab.Simulation(
    loadcase=hyperelastic.lab.Biaxial(label="biaxial"),
    stretch=np.linspace(1.0, 1.75),
    material=material,
    labels=parameters.keys(),
    parameters=parameters.values(),
)

fig, ax = ux.plot_stress_stretch(lw=2)
fig, ax = ps.plot_stress_stretch(ax=ax, lw=2)
fig, ax = bx.plot_stress_stretch(ax=ax, lw=2)

ax.legend()
ax.set_title(rf"Mooney-Rivlin (C10={parameters['C10']}, C01={parameters['C01']})")

fig_lab-mr

License

Hyperelastic - Constitutive hyperelastic material formulations for FElupe (C) 2024 Andreas Dutzler, Graz (Austria).

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hyperelastic-0.10.1.tar.gz (72.2 kB view details)

Uploaded Source

Built Distribution

hyperelastic-0.10.1-py3-none-any.whl (63.4 kB view details)

Uploaded Python 3

File details

Details for the file hyperelastic-0.10.1.tar.gz.

File metadata

  • Download URL: hyperelastic-0.10.1.tar.gz
  • Upload date:
  • Size: 72.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for hyperelastic-0.10.1.tar.gz
Algorithm Hash digest
SHA256 262c38d146a502cdc7266351668558f852a76619b557b7d32d65421a4bb18ac8
MD5 6570f0e0b99c678f53b0c8a2b8cf0533
BLAKE2b-256 58aa8314b82db54ea86543b6c4ffd48433ef4179f7eb37a866b1311299cc4699

See more details on using hashes here.

File details

Details for the file hyperelastic-0.10.1-py3-none-any.whl.

File metadata

File hashes

Hashes for hyperelastic-0.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 986889b791c2078afb0278b198649c884741b6afc0ed407b40073e540585a714
MD5 ea004b8a21c3e07c8fb255c0ce2b86f2
BLAKE2b-256 216e003b738926d9b8f6d5f32afdcc1b4f777753fc73e8029cba024038331716

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page