Skip to main content

A tool for optimizing two inter-dependent parameters.

Project description

HyperKnee Finder

This tool will found the optimal values for two inter-dependant parameters using the well known knee/elbow method.

The method prescribe to search for the point where the curvature is at the maximum (Here an example).

A more formal definition (from Satopää, Albrecht, Irwin, and Raghavan, 2011, p.1) states that the knee/elbow point is the point after which:

relative costs to increase [or decrease, NdC] some tunable parameter is no longer worth the corresponding performance benefit

While usually this method is used for tuning one single parameter, nothing impeach to the same for multiple, inter-dependant parameters. This tool is anyway able to find the optimal value only for two parameters.

Plot of the HyperKnee

In facts, HyperKnee Finder is a 2-d generalisation of the KneeFinder tool.

Motivations for HyperKnee Finder

In many situations the parameters of an algorithm depends on each other. What you usually do is to ignore this dependency, and so you optimise the first parameter, then you use the found value to optimise the second parameter.

Acting like this, in general, does not guarantee you to land on the optimal combination for the two parameters.

Indeed, you have to evaluate all the possible combination of the two parameters, and at that point you can make your choice.

Examples

The following example show how to find the HyperKnee point in a double exponential decay.

from hyperkneefinder import HyperKneeFinder
import numpy as np
%matplotlib ipympl

#double exponential decay plus noise, clipped
X = np.arange(1, 8, 0.1)

Y = np.arange(6, 10, 0.1)
Z = np.zeros((len(X), len(Y)))
for i in range(len(X)):
    for j in range(len(Y)):
        Z[i, j] = np.exp(-X[i]/3) + np.exp(-(Y[j]-5)) + np.random.rand()/45

Z = np.clip(Z, a_min= 0.5, a_max=2)
hkf= HyperKneeFinder(X, Y, Z, name_x='parameter_1', name_y='parameter_2', clean_data=True, clean_threshold=0.8)
hkf.visualise_hyperknee()

Plot of the HyperKnee

Also with different pseudo-convexity:

X = np.arange(1, 8, 0.1)

Y = np.arange(6, 10, 0.1)
Z = np.zeros((len(X), len(Y)))
for i in range(len(X)):
    for j in range(len(Y)):
        Z[i, j] = np.exp(-2/X[i]) + np.exp(-3/(Y[j]-5)) # + np.random.rand()/15
        
Z = np.clip(Z, a_min= 0, a_max=1)
hkf= HyperKneeFinder(X, Y, Z, name_x='parameter_1', name_y='parameter_2', clean_data=True, clean_threshold=0.8)
hkf.visualise_hyperknee()

Plot of the HyperKnee

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

HyperkneeFinder-0.0.3.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

HyperkneeFinder-0.0.3-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file HyperkneeFinder-0.0.3.tar.gz.

File metadata

  • Download URL: HyperkneeFinder-0.0.3.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for HyperkneeFinder-0.0.3.tar.gz
Algorithm Hash digest
SHA256 0f543a7c51d4ed17845b10accc452866e152154f04fa4d34d76e881de9696b1b
MD5 1910061b049534fb5928ad2a082fddaa
BLAKE2b-256 bf4d3fa597cf8a9d7474c859718887ee1ab0f90bf6e200edd25c801cc500543e

See more details on using hashes here.

File details

Details for the file HyperkneeFinder-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for HyperkneeFinder-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 02521b862ec79fe64a34492667d38792dcfd2c3b47bbe586349ec112db95e178
MD5 d9024607bd4aa28db3d6fbffe16cd7d0
BLAKE2b-256 3c2c8d26c2c58fb2a4b1db9e878701a19ab349f45c7459d8746fde31e126d7c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page