Hyperlight is a Pytorch hypernetwork framework with a streamlined API
Project description
HyperLight
Hypernetworks in Pytorch made easy
TL;DR
HyperLight is a Pytorch library designed to make implementing hypernetwork models easy and painless. What sets HyperLight apart from other hypernetwork implementations:
- Bring your own architecture – Reuse your existing model code.
- Principled Parametrizations and Initializations – Default networks can have unstable training dynamics, HyperLight has good defaults that lead to improved training [1].
- Work with pretrained models – Use pretrained weights as part of the hypernetwork initialization.
- Seamless Composability – It's hypernets all the way down! Hypernetize hypernet models without issue.
- Pytorch-nic API design – Parameters are treated as an attribute of the layer, preventing the need for rewriting PyTorch modules.
[1] Non-Proportional Parametrizations for Stable Hypernetwork Learning
Installation
To install the stable version of HyperLight via pip
:
pip install hyperlight
Or for the latest version:
pip install git+https://github.com/JJGO/hyperlight.git
For the manual install:
# clone it
git clone https://github.com/JJGO/hyperlight
# install dependencies
python -m pip install -r ./hyperlight/requirements.txt # only dependency is PyTorch
# add this to your .bashrc/.zshrc
export PYTHONPATH="$PYTHONPATH:/path/to/hyperlight)"
Getting Started
The main advantage of HyperLight is that it allows to easily reuse existing networks without having to redo the model code.
For example, here's a Bayesian Neural Hypernetwork for the resnet18 architecture:
from torchvision.models import resnet18
import hyperlight as hl
# First, instantiate the main network and
# hyperparametrize all convolutional weights
mainnet = resnet18()
modules = hl.find_modules_of_type(mainnet, [nn.Conv2d])
# Replace nn.Parameter objects with ExternalParameters
mainnet = hl.hypernetize(mainnet, modules=modules)
# Get the spec of the weights we need to predict
parameter_shapes = mainnet.external_shapes()
# We can predict these shapes any way we want,
# but hyperlight provides hypernetwork models
hyperparam_shape = {'h': (10,)} # 10-dim input
hypernet = hl.Hypernet(
input_shapes=hyperparam_shape,
output_shapes=parameter_shapes,
hidden_sizes=[16,64,128],
)
# Now, instead of model(input) we first predict the main network weights
parameters = hl.hypernet(h=hyperpameter_input)
# and then use the main network
with mainnet.using_externals(parameters):
# Within this context manager, the weights are accessible
prediction = mainnet(input)
# After this point, weights are removed
We can also wrap this into nn.Module
to pair-up the hypernet with the main network and have a nicer API:
class HyperResNet18(nn.Module):
def __init__(self,
hypernet_layers: List[]
):
super().__init__()
mainnet = resnet18()
modules = hl.find_modules_of_type(mainnet, [nn.Conv2d])
self.mainnet = hl.hypernetize(mainnet, modules=modules)
self.hypernet = hl.Hypernet(
input_shapes={'h': (10,)},
output_shapes=parameter_shapes,
layer_sizes=[16,64,128],
)
def forward(self, input, hyper_input):
parameters = self.hypernet(h=hyper_input)
with self.mainnet.using_externals(parameters):
prediction = self.mainnet(input)
return input
With HyperLight, we can reuse the pretrained weights by setting them as independent weights:
class HyperResNet18(nn.Module):
def __init__(self,
hypernet_layers: List[]
):
super().__init__()
# Load pretrained weights
mainnet = resnet18(pretrained=True)
modules = hl.find_modules_of_type(mainnet, [nn.Conv2d])
self.mainnet, weights = hl.hypernetize(mainnet, modules=modules, return_values=True)
# Construct from existing
self.hypernet = hl.Hypernet.from_existing(
weights, # weights encode shape and initialization
input_shapes={'h': (10,)},
output_shapes=parameter_shapes,
layer_sizes=[16,64,128],
)
def forward(self, input, hyper_input):
parameters = self.hypernet(h=hyper_input)
with self.mainnet.using_externals(parameters):
prediction = self.mainnet(input)
return input
Tutorial
Concepts
HyperLight introduces a few new concepts:
HyperModule
– A specializednn.Module
object that can hold both regular parameters andExternalParameters
to be predicted by an external hypernetwork.ExternalParameter
–nn.Parameter
replacement that only stores the required shape of the externalized parameter. Parameter data can be set and reset with the hypernetwork predictions.HyperNetwork
–nn.Module
that predicts a main network parameters for a given input.
Defining a HyperModule
with ExternalParameter
s
Here is an example of how we define a hypernetized Linear layer. We need to make sure to
define the ExternalParameter
properties with their correct shapes.
import torch.nn.functional as F
import hyperlight as hl
class HyperLinear(hl.HyperModule):
"""Implementation of a nn.Linear layer but with external parameters
that will be predicted by an external hypernetwork"""
in_features: int
out_features: int
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super().__init__()
assert isinstance(in_features, int) and isinstance(out_features, int)
self.in_features = in_features
self.out_features = out_features
self.weight = hl.ExternalParameter(shape=(out_features, in_features))
if bias:
self.bias = hl.ExternalParameter(shape=(out_features,))
else:
self.bias = None
def forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
Once defined, we can make use of this module as follows:
>>> layer = HyperLinear(in_features=8, out_features=16)
>>> layer.external_shapes()
{'weight': (16, 8), 'bias': (16,)}
>>> x = torch.zeros(1, 8)
# We need to set the weights before using the layer
>>> layer(x)
[...]
AttributeError: Uninitialized External Parameter, please set the value first
# Initialize the external weights
>>> layer.set_externals(weight=torch.rand(size=(16,8)), bias=torch.zeros((16,)))
>>> layer(x).shape
torch.Size([1, 16])
# Once we are done, we reset the external parameter values
>>> layer.reset_externals()
Alternatively, we can use the using_externals
contextmanager that will set and reset
the parameters accordingly:
params(weight=torch.rand(size=(16,8)), bias=torch.zeros((16,)))
with layer.using_externals(params):
y = layer(x)
Dynamically hypernetizing modules
HyperLight supports dynamic HyperModule creation using the hypernetize
helper.
We need to specify which parameters we want to remove from the module and convert to
ExternalParameter
objects:
>>> from torch import nn
>>> import hyperlight as hl
>>> layer = nn.Linear(in_features=8, out_features=16)
>>> layer = hl.hypernetize(layer, parameters=[layer.weight, layer.bias])
>>> layer
HypernetizedLinear()
>>> layer.external_shapes()
{'weight': (16, 8), 'bias': (16,)}
hypernetize
is recursive, and supports entire modules being specified:
>>> model = nn.Sequential(OrderedDict({
'conv': nn.Conv2d(3,128,3),
'norm': nn.BatchNorm2d(128),
'relu': nn.ReLU(),
'pool': nn.AdaptiveAvgPool2d((1,1)),
'out': nn.Linear(128, 10)
}))
>>> model = hl.hypernetize(model, modules=[model.conv, model.out])
>>> model.external_shapes()
{'conv.weight': (128, 3, 3, 3),
'conv.bias': (128,),
'out.weight': (10, 128),
'out.bias': (10,)}
Finding modules and parameters
In addition, HyperLight provides several routines to recursively search for parameters and modules to feed into hypernetize
:
find_modules_of_type(model, module_types)
– Find modules of a certain type, e.g.nn.Linear
ornn.Conv2d
find_modules_from_patterns(model, globs=None, regex=None)
– Find modules that match specific patterns using globs, e.g.*.conv
; or regexes, e.g.layer[1-3].*conv
find_parameters_from_patterns(model, globs=None, regex=None)
– Find parameters that match specific patterns.
Some examples on a ResNet18 architecture:
>>> from torchvision.models import resnet18
>>> import hyperlight as hl
>>> model = resnet18()
# Find all convolutions
>>> hl.find_modules_of_type(model, [nn.Conv2d])
{'conv1': Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False),
'layer1.0.conv1': Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
'layer1.0.conv2': Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
...
# Find the first convolution of each ResNet block
>>> hl.find_modules_from_patterns(model, regex=['^layer\d.0.conv1'])
{'layer1.0.conv1': Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
'layer2.0.conv1': Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False),
'layer3.0.conv1': Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False),
'layer4.0.conv1': Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)}
# Get only the convolutional weights of the first block (no biases)
>>> hl.find_parameters_from_patterns(model, globs=['layer1*conv*.weight']).keys()
dict_keys(['layer1.0.conv2.weight', 'layer1.0.conv1.weight', 'layer1.1.conv1.weight', 'layer1.1.conv2.weight'])
Other methods
HyperLight goes beyond hypernetworks and helps implement other Deep Learning techniques related to hypernetworks.
As an example, the following code implements FiLM. Instead of having to modify our entire forward pass to keep track of the $\gamma$ and $\beta$ coefficients, we can have HyperLight handle that for us:
import hyperlight as hl
class FiLM(hl.HyperModule):
def __init__(self,
n_features: int
):
super().__init__()
self.n_features = n_features
self.gamma = hl.ExternalParameter((n_features,))
self.beta = hl.ExternalParameter((n_features,))
def forward(self, x):
return self.gamma * x + self.beta
class CNNwithFiLM(hl.HyperModule):
def __init__(self):
super().__init__()
self.layers = nn.Sequential([
nn.Conv2d(3,64,kernel_size=3,padding=1),
FiLM(64),
nn.LeakyReLU(),
nn.BatchNorm2d(64)
nn.Conv2d(64,128,kernel_size=3,padding=1),
FiLM(128),
nn.LeakyReLU(),
nn.BatchNorm2d(128)
nn.Conv2d(128,256,kernel_size=3,padding=1),
FiLM(256),
nn.LeakyReLU(),
nn.BatchNorm2d(256)
nn.AdaptiveAvgPool2d((1,1)),
])
def FiLM_Model(nn.Module):
def __init__(self, embedding_size):
self.main = CNNwithFiLM()
self.aux = hl.Hypernet(
input_shapes={'film_input': (embedding_size,)},
output_shapes=self.main.external_shapes(),
hidden_sizes=[],
)
def forward(self, input, conditioning):
params = self.aux(film_input=conditioning)
with self.main.using_externals(params):
return self.main(input)
Citation
If you find our work or any of our materials useful, please cite our paper:
@article{ortiz2023nonproportional,
title={Non-Proportional Parametrizations for Stable Hypernetwork Learning},
author={Jose Javier Gonzalez Ortiz and John Guttag and Adrian Dalca},
year={2023},
journal={arXiv:2304.07645},
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hyperlight-0.0.5.tar.gz
.
File metadata
- Download URL: hyperlight-0.0.5.tar.gz
- Upload date:
- Size: 24.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.9.12 Linux/5.15.0-69-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5930f413f6af769ad7053bbc7d8904d771b758e449e3a996a44878df87a9354 |
|
MD5 | fd58db09d7f6aab4947665f9daad3566 |
|
BLAKE2b-256 | 026514bbf21b81d553139176e32f515df19a8154575c5b9b36d13b971552e0d4 |
File details
Details for the file hyperlight-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: hyperlight-0.0.5-py3-none-any.whl
- Upload date:
- Size: 23.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.9.12 Linux/5.15.0-69-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1851b367ce165242b86b8d5646e28dd3659b29d41a6be2d617dc6bcb1fbbdbb2 |
|
MD5 | 3e8ab1bd8c245d7c892fa8bff65cfb76 |
|
BLAKE2b-256 | 52c0278e2f45878c0bb138dd9bd172844c2bd845022779db8d5f843aaf97e1dd |