An General Automated Machine Learning Framework
Project description
Hypernets
Hypernets: A General Automated Machine Learning Framework
Hypernets is a general AutoML framework, based on which it can implement automatic optimization tools for various machine learning frameworks and libraries, including deep learning frameworks such as tensorflow, keras, pytorch, and machine learning libraries like sklearn, lightgbm, xgboost, etc. We introduced an abstract search space representation, taking into account the requirements of hyperparameter optimization and neural architecture search(NAS), making Hypernets a general framework that can adapt to various automated machine learning needs.
Overview
Conceptual Model
Illustration of the Search Space
Installation
pip install hypernets
Verify installation:
python -c "from examples import smoke_testing;"
Hypernets related projects
- HyperGBM: A full pipeline AutoML tool integrated various GBM models.
- HyperDT/DeepTables: An AutoDL tool for tabular data.
- HyperKeras: An AutoDL tool for Neural Architecture Search and Hyperparameter Optimization on Tensorflow and Keras.
- Cooka: Lightweight interactive AutoML system.
- Hypernets: A general automated machine learning framework.
Neural Architecture Search
Examples
HyperKeras
from hypernets.searchers.mcts_searcher import *
from hypernets.frameworks.keras.layers import *
from hypernets.frameworks.keras.hyper_keras import HyperKeras
from hypernets.core.callbacks import SummaryCallback
def get_space():
space = HyperSpace()
with space.as_default():
in1 = Input(shape=(10,))
dense1 = Dense(10, activation=Choice(['relu', 'tanh', None]), use_bias=Bool())(in1)
bn1 = BatchNormalization()(dense1)
dropout1 = Dropout(Choice([0.3, 0.4, 0.5]))(bn1)
Dense(2, activation='softmax', use_bias=True)(dropout1)
return space
mcts = MCTSSearcher(get_space, max_node_space=4)
hk = HyperKeras(mcts, optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'],
callbacks=[SummaryCallback()])
x = np.random.randint(0, 10000, size=(100, 10))
y = np.random.randint(0, 2, size=(100), dtype='int')
hk.search(x, y, x, y, max_trails=10)
assert hk.get_best_trail()
HyperGBM
from hypernets.frameworks.ml.hyper_gbm import HyperGBM
from hypernets.frameworks.ml.common_ops import get_space_num_cat_pipeline_complex
from hypernets.searchers.random_searcher import RandomSearcher
from hypernets.core.callbacks import *
from hypernets.core.searcher import OptimizeDirection
from hypernets.frameworks.ml.datasets import dsutils
from sklearn.model_selection import train_test_split
rs = RandomSearcher(get_space_num_cat_pipeline_complex, optimize_direction=OptimizeDirection.Maximize)
hk = HyperGBM(rs, task='classification', reward_metric='accuracy',
callbacks=[SummaryCallback(), FileLoggingCallback(rs)])
df = dsutils.load_bank()
df.drop(['id'], axis=1, inplace=True)
X_train, X_test = train_test_split(df.head(1000), test_size=0.2, random_state=42)
y_train = X_train.pop('y')
y_test = X_test.pop('y')
hk.search(X_train, y_train, X_test, y_test, max_trails=30)
best_trial = hk.get_best_trail()
assert best_trial
estimator = hk.final_train(best_trial.space_sample, X_train, y_train)
score = estimator.predict(X_test)
result = estimator.evaluate(X_test, y_test)
HyperDT (Hyperparameter Tuning & NAS for DeepTables)
Install DeepTables
pip install deeptables
from deeptables.models.hyper_dt import mini_dt_space, HyperDT
from hypernets.searchers.random_searcher import RandomSearcher
from hypernets.core.searcher import OptimizeDirection
from hypernets.core.callbacks import SummaryCallback, FileLoggingCallback
from hypernets.searchers.mcts_searcher import MCTSSearcher
from hypernets.searchers.evolution_searcher import EvolutionSearcher
from hypernets.core.trial import DiskTrailStore
from hypernets.frameworks.ml.datasets import dsutils
from sklearn.model_selection import train_test_split
disk_trail_store = DiskTrailStore('~/trail_store')
# searcher = MCTSSearcher(mini_dt_space, max_node_space=0,optimize_direction=OptimizeDirection.Maximize)
# searcher = RandomSearcher(mini_dt_space, optimize_direction=OptimizeDirection.Maximize)
searcher = EvolutionSearcher(mini_dt_space, 200, 100, regularized=True, candidates_size=30,
optimize_direction=OptimizeDirection.Maximize)
hdt = HyperDT(searcher, callbacks=[SummaryCallback(), FileLoggingCallback(searcher)], reward_metric='AUC',
earlystopping_patience=1, )
df = dsutils.load_adult()
df_train, df_test = train_test_split(df, test_size=0.2, random_state=42)
X = df_train
y = df_train.pop(14)
y_test = df_test.pop(14)
hdt.search(df_train, y, df_test, y_test, max_trails=100, batch_size=256, epochs=10, verbose=1, )
best_trial = hdt.get_best_trail()
assert best_trial
DataCanvas
Hypernets is an open source project created by DataCanvas.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for hypernets-0.1.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b229e136755d22a7c0f411489784b573ec84850757c8217f24dbb4f059540edf |
|
MD5 | d98d1310abbede31c19b45eb9cbc356d |
|
BLAKE2b-256 | 9e07de746f0cef230573328d6e17540da65845174d9fa42719a2fe7563acbdb6 |