Skip to main content

Query Engine API for Distributed AtomSpace

Project description

Hyperon DAS

Hi! This package is a query engine API for Distributed AtomSpace (DAS). When is possible execute queries using Pattern Matcher

Table of Contents

Installation

Before you start, make sure you have Python >= 3.8.5 and Pip installed on your system.

You can install and run this project using different methods. Choose the one that suits your needs.

Using-pip

Run the following command to install the project using pip::

pip install hyperon-das

Using-Poetry

If you prefer to manage your Python projects with Poetry, follow these steps:

  1. Install Poetry (if you haven't already):

    pip install poetry
    
  2. Clone the project repository:

    git clone git@github.com:singnet/das-query-engine.git
    cd das-query-engine
    
  3. Install project dependencies using Poetry:

    poetry install
    
  4. Activate the virtual environment created by Poetry:

    poetry shell
    

Now you can run the project within the Poetry virtual environment.

Usage

So far we have two ways of making queries using the API. One that uses database persistence and another that doesn't. The way to create and execute the query is exactly the same, the only difference is when you need to instantiate the API class. Below you can see more details.

Redis and MongoDB

If you want to use data persistence, you must have Redis and MongoDB running in your environment and you must have the following variables configured with their respective values:

Example:

DAS_MONGODB_HOSTNAME=172.17.0.2
DAS_MONGODB_PORT=27017
DAS_MONGODB_USERNAME=mongo
DAS_MONGODB_PASSWORD=mongo
DAS_REDIS_HOSTNAME=127.0.0.1
DAS_REDIS_PORT=6379

TIP: You can change the values in the environment file, which is in the root directory and run the command below:

source environment
Create a client API
from hyperon_das import DistributedAtomSpace

api = DistributedAtomSpace('redis_mongo')

In Memory

This way you don't need anything just instantiate the class as shown below:

  1. A simple query which is a AND operation on two links whose targets are variables.

    from hyperon_das import DistributedAtomSpace
    from hyperon_das.pattern_matcher import And, Variable, Link
    from hyperon_das.utils import QueryOutputFormat
    
    api = DistributedAtomSpace('ram_only')
    
    api.add_link({
        'type': 'Evaluation',
        'targets': [
            {'type': 'Predicate', 'name': 'Predicate:has_name'},
            {
                'type': 'Evaluation',
                'targets': [
                    {'type': 'Predicate', 'name': 'Predicate:has_name'},
                    {
                        'type': 'Set',
                        'targets': [
                            {'type': 'Reactome', 'name': 'Reactome:R-HSA-164843'},
                            {'type': 'Concept', 'name': 'Concept:2-LTR circle formation'},
                        ]
                    },
                ],
            },
        ],
    })
    
    expression =  Link("Evaluation",  ordered=True,  targets=[Variable("V1"), Variable("V2")])
    
    resp = api.pattern_matcher_query(expression, {'return_type': QueryOutputFormat.JSON, 'toplevel_only': True})
    
    print(resp)
    
    [
        {
            "V1": {
                "type": "Predicate",
                "name": "Predicate:has_name",
                "is_link": false,
                "is_node": true
            },
            "V2": {
                "type": "Evaluation",
                "targets": [
                    {
                        "type": "Predicate",
                        "name": "Predicate:has_name"
                    },
                    {
                        "type": "Set",
                        "targets": [
                            {
                                "type": "Reactome",
                                "name": "Reactome:R-HSA-164843"
                            },
                            {
                                "type": "Concept",
                                "name": "Concept:2-LTR circle formation"
                            }
                        ]
                    }
                ],
                "is_link": true,
                "is_node": false
            }
        }
    ]
    
  2. Add Node and And Link (It's possible only using Ram Only)

    api.count_atoms() # (0, 0)
    
    nodes = [
        {
            'type': 'Reactome',
            'name': 'Reactome:R-HSA-164843',
        },
        {
            'type': 'Concept',
            'name': 'Concept:2-LTR circle formation',
        }
    ]
    
    for node in nodes:
        api.add_node(node)
    
    api.count_atoms() # (2, 0)
    
    link = {
        'type': 'Evaluation',
        'targets': [
            {
                'type': 'Predicate',
                'name': 'Predicate:has_name'
            },
            {
                'type': 'Evaluation',
                'targets': [
                    {
                        'type': 'Predicate',
                        'name': 'Predicate:has_name'
                    },
                    {
                        'type': 'Set',
                        'targets': [
                            {
                                'type': 'Reactome',
                                'name': 'Reactome:R-HSA-164843',
                            },
                            {
                                'type': 'Concept',
                                'name': 'Concept:2-LTR circle formation',
                            },
                        ]
                    },
                ],
            },
        ],
    }
    
    api.add_link(link)
    
    api.count_atoms() # (3, 3)
    

    Note1: in this example I add 2 nodes and 1 a link, but in the end I have 3 nodes and 3 links. Therefore, it is possible to add nested links and as links are composed of nodes, if the link node doesn't exist in the system it's added.

    Note2: For these methods to work well, both nodes and links must be a dict with the structure shown above, i.e, for nodes you need to send, at least, the parameters type and name and for links type and targets

Tests

You can run the command below to run the unit tests

make test-coverage

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hyperon_das-0.3.11.tar.gz (21.0 kB view details)

Uploaded Source

Built Distribution

hyperon_das-0.3.11-py3-none-any.whl (22.6 kB view details)

Uploaded Python 3

File details

Details for the file hyperon_das-0.3.11.tar.gz.

File metadata

  • Download URL: hyperon_das-0.3.11.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.0 Linux/6.2.0-1018-azure

File hashes

Hashes for hyperon_das-0.3.11.tar.gz
Algorithm Hash digest
SHA256 2c0f6a210fcb664d284b0b7bca4c13c75fba93a8df34d0ce33b8131186409e92
MD5 ade31ada679f36d8a7b474346af8910e
BLAKE2b-256 96c4e1363df8d93a159410e488304a574ffef00e33685b2c5f2568f13c256ba3

See more details on using hashes here.

File details

Details for the file hyperon_das-0.3.11-py3-none-any.whl.

File metadata

  • Download URL: hyperon_das-0.3.11-py3-none-any.whl
  • Upload date:
  • Size: 22.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.0 Linux/6.2.0-1018-azure

File hashes

Hashes for hyperon_das-0.3.11-py3-none-any.whl
Algorithm Hash digest
SHA256 c5f8ef9188d6256af9d22676f202fbb57a63046532e38e3ec82fb8bd175f07e9
MD5 10ebdabee850c60c941866f5885e0299
BLAKE2b-256 aff182abc64c65891cb4fd5004b3ae3096946c576ee57f936193e880f41d4072

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page