Skip to main content

Query Engine API for Distributed AtomSpace

Project description

Hyperon DAS

Hi! This package is a query engine API for Distributed AtomSpace (DAS). When is possible execute queries using Pattern Matcher

Table of Contents

Installation

Before you start, make sure you have Python >= 3.8.5 and Pip installed on your system.

You can install and run this project using different methods. Choose the one that suits your needs.

Using-pip

Run the following command to install the project using pip::

pip install hyperon-das

Using-Poetry

If you prefer to manage your Python projects with Poetry, follow these steps:

  1. Install Poetry (if you haven't already):

    pip install poetry
    
  2. Clone the project repository:

    git clone git@github.com:singnet/das-query-engine.git
    cd das-query-engine
    
  3. Install project dependencies using Poetry:

    poetry install
    
  4. Activate the virtual environment created by Poetry:

    poetry shell
    

Now you can run the project within the Poetry virtual environment.

Usage

So far we have two ways of making queries using the API. One that uses database persistence and another that doesn't. The way to create and execute the query is exactly the same, the only difference is when you need to instantiate the API class. Below you can see more details.

Redis and MongoDB

If you want to use data persistence, you must have Redis and MongoDB running in your environment and you must have the following variables configured with their respective values:

Example:

DAS_MONGODB_HOSTNAME=172.17.0.2
DAS_MONGODB_PORT=27017
DAS_MONGODB_USERNAME=mongo
DAS_MONGODB_PASSWORD=mongo
DAS_REDIS_HOSTNAME=127.0.0.1
DAS_REDIS_PORT=6379

TIP: You can change the values in the environment file, which is in the root directory and run the command below:

source environment
Create a client API
from hyperon_das import DistributedAtomSpace

api = DistributedAtomSpace('redis_mongo')

In Memory

This way you don't need anything just instantiate the class as shown below:

  1. A simple query which is a AND operation on two links whose targets are variables.

    from hyperon_das import DistributedAtomSpace
    from hyperon_das.pattern_matcher import And, Variable, Link
    from hyperon_das.utils import QueryOutputFormat
    
    api = DistributedAtomSpace('ram_only')
    
    api.add_link({
        'type': 'Evaluation',
        'targets': [
            {'type': 'Predicate', 'name': 'Predicate:has_name'},
            {
                'type': 'Evaluation',
                'targets': [
                    {'type': 'Predicate', 'name': 'Predicate:has_name'},
                    {
                        'type': 'Set',
                        'targets': [
                            {'type': 'Reactome', 'name': 'Reactome:R-HSA-164843'},
                            {'type': 'Concept', 'name': 'Concept:2-LTR circle formation'},
                        ]
                    },
                ],
            },
        ],
    })
    
    expression =  Link("Evaluation",  ordered=True,  targets=[Variable("V1"), Variable("V2")])
    
    resp = api.pattern_matcher_query(expression, {'return_type': QueryOutputFormat.JSON, 'toplevel_only': True})
    
    print(resp)
    
    [
        {
            "V1": {
                "type": "Predicate",
                "name": "Predicate:has_name",
                "is_link": false,
                "is_node": true
            },
            "V2": {
                "type": "Evaluation",
                "targets": [
                    {
                        "type": "Predicate",
                        "name": "Predicate:has_name"
                    },
                    {
                        "type": "Set",
                        "targets": [
                            {
                                "type": "Reactome",
                                "name": "Reactome:R-HSA-164843"
                            },
                            {
                                "type": "Concept",
                                "name": "Concept:2-LTR circle formation"
                            }
                        ]
                    }
                ],
                "is_link": true,
                "is_node": false
            }
        }
    ]
    
  2. Add Node and And Link (It's possible only using Ram Only)

    api.count_atoms() # (0, 0)
    
    nodes = [
        {
            'type': 'Reactome',
            'name': 'Reactome:R-HSA-164843',
        },
        {
            'type': 'Concept',
            'name': 'Concept:2-LTR circle formation',
        }
    ]
    
    for node in nodes:
        api.add_node(node)
    
    api.count_atoms() # (2, 0)
    
    link = {
        'type': 'Evaluation',
        'targets': [
            {
                'type': 'Predicate',
                'name': 'Predicate:has_name'
            },
            {
                'type': 'Evaluation',
                'targets': [
                    {
                        'type': 'Predicate',
                        'name': 'Predicate:has_name'
                    },
                    {
                        'type': 'Set',
                        'targets': [
                            {
                                'type': 'Reactome',
                                'name': 'Reactome:R-HSA-164843',
                            },
                            {
                                'type': 'Concept',
                                'name': 'Concept:2-LTR circle formation',
                            },
                        ]
                    },
                ],
            },
        ],
    }
    
    api.add_link(link)
    
    api.count_atoms() # (3, 3)
    

    Note1: in this example I add 2 nodes and 1 a link, but in the end I have 3 nodes and 3 links. Therefore, it is possible to add nested links and as links are composed of nodes, if the link node doesn't exist in the system it's added.

    Note2: For these methods to work well, both nodes and links must be a dict with the structure shown above, i.e, for nodes you need to send, at least, the parameters type and name and for links type and targets

Tests

You can run the command below to run the unit tests

make test-coverage

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hyperon_das-0.3.3.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

hyperon_das-0.3.3-py3-none-any.whl (22.2 kB view details)

Uploaded Python 3

File details

Details for the file hyperon_das-0.3.3.tar.gz.

File metadata

  • Download URL: hyperon_das-0.3.3.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.5 Linux/6.5.8-arch1-1

File hashes

Hashes for hyperon_das-0.3.3.tar.gz
Algorithm Hash digest
SHA256 76bae8e8531735e3c4e4f122bc8ce85fbd2003390ca63d4540492d723c90d3a2
MD5 eacaa638be0f425b6cf06018a8581e9e
BLAKE2b-256 eac2b156bc8a1d94986ef2f2e764f801303807f59ca9f1cddb6a467d2a28f98d

See more details on using hashes here.

File details

Details for the file hyperon_das-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: hyperon_das-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 22.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.11.5 Linux/6.5.8-arch1-1

File hashes

Hashes for hyperon_das-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6fb53b302f2b5981f701f546161ab139237d05d88c3bb0211e1eb8ca5c957f59
MD5 a2552e1817256f43f0b3180f5d668550
BLAKE2b-256 bf053a3fed0b09290bdb08a8d7e939ea7ea701711d04d5bb7fe711874593104d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page