Query Engine API for Distributed AtomSpace
Project description
Hyperon DAS
Hi! This package is a query engine API for Distributed AtomSpace (DAS). When is possible execute queries using Pattern Matcher
Table of Contents
- Hyperon DAS
Installation
Before you start, make sure you have Python >= 3.8.5 and Pip installed on your system.
You can install and run this project using different methods. Choose the one that suits your needs.
Using-pip
Run the following command to install the project using pip::
pip install hyperon-das
Using-Poetry
If you prefer to manage your Python projects with Poetry, follow these steps:
-
Install Poetry (if you haven't already):
pip install poetry
-
Clone the project repository:
git clone git@github.com:singnet/das-query-engine.git cd das-query-engine
-
Install project dependencies using Poetry:
poetry install
-
Activate the virtual environment created by Poetry:
poetry shell
Now you can run the project within the Poetry virtual environment.
Pre-Commit Setup
Before pushing your changes, it's recommended to set up pre-commit to run automated tests locally. Run the following command (needs to be done once):
pre-commit install
Usage
You can instantiate DAS in three different ways. see below:
Local
This is a local instance of DAS with default settings.
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace()
Remote
To create a remote DAS, you need to specify the 'query_engine' parameter as 'remote' and pass the machine, 'host' and 'port' parameters. See below how to do this:
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace(query_engine='remote', host='0.0.0.0', port=1234)
Server
To create a DAS server, you will need to specify the 'atomdb' parameter as 'redis_mongo' and pass the database parameters. The databases supported in this release are Redis and MongoDB. Therefore, the minimum expected parameters are:
- mongo_hostname
- mongo_port
- mongo_username
- mongo_password
- redis_hostname
- redis_port
but it is possible to pass other configuration parameters:
- mongo_tls_ca_file
- redis_username
- redis_password
- redis_cluster
- redis_ssl
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace(
atomdb='redis_mongo',
mongo_hostname='127.0.0.2',
mongo_port=27017,
mongo_username='mongo',
mongo_password='mongo',
redis_hostname='127.0.0.1',
redis_port=6379
)
TraverseEngine
Introducing TraverseEngine! This API functionality can process some requests related to hypergraph traversal. In other words, it allows a given Atom to travel to it's neighborhood through adjacent Links.
Creating a TraverseEngine object
To create a TraverseEngine object, use the get_traversal_cursor
method, which expects a handle as a starting point for the traversal.
Optionally, you can provide kwargs parameters:
- handles_only
is a bool and dafaults is False. If True, get
methods in TraverseEngine return handles only.
Example:
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace()
traverse_engine = das.get_traversal_cursor(handle='12345', handles_only=True)
Traversal Methods
The TraverseEngine provides some methods for graph traversal:
- get(): Return the current cursor.
- get_links(kwargs): Return any links having current cursor as one of its targets, i.e. any links pointing to cursor.
- get_neighbors(kwargs): Returns the set formed by all targets of all links that point to the current cursor. In other words, the set of “neighbors” of the current cursor.
- follow_link(kwargs): Updates the current cursor by following a link and selecting one of its targets, randomly.
- goto(handle): Reset the current cursor to the passed handle.
Parameters for Traversal Methods
Various parameters can be passed to the traversal methods to filter the results. For example:
- link_type=XXX: Filters to contain only links whose named_type == XXX.
- cursor_position=N: filters the response so that only links with the current cursor at the nth position of their target are returned. (only available in the
get_links
method) - target_type=XXX: Filters to contain only links whose at least one of the targets has named_type == XXX.
- unique_path=FLAG: if FLAG is True, raise an exception if there's more then one possible neighbor to select after applying all filters. (only available in the
follow_link
method) - filter=F: F is a function used to filter results after every other filters have been applied. F should expect a dict (the atom document) and return True if and only if this atom should be kept. (only available when the TraverseEngine object is created by passing the
handles_only=False
parameter)
Examples
Local DAS
This way it is only possible to make queries in your local memory with the Atoms that you placed in the DAS. See bellow:
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace()
das.count_atoms() # (0, 0)
das.add_link({
'type': 'Inheritance',
'targets': [
{'type': 'Concept', 'name': 'human'},
{'type': 'Concept', 'name': 'mammal'}
],
})
das.add_link({
'type': 'Inheritance',
'targets': [
{'type': 'Concept', 'name': 'monkey'},
{'type': 'Concept', 'name': 'mammal'}
]
})
das.count_atoms() # (3, 2)
query = {
'atom_type': 'link',
'type': 'Inheritance',
'targets': [
{'atom_type': 'variable', 'name': 'v1'},
{'atom_type': 'node', 'type': 'Concept', 'name': 'mammal'},
]
}
query_params = {
"toplevel_only": False
}
resp = das.query(query, query_params)
print(resp)
[
{
"handle": "c93e1e758c53912638438e2a7d7f7b7f",
"type": "Inheritance",
"template": ["Inheritance", "Concept", "Concept"],
"targets": [
{
"handle": "af12f10f9ae2002a1607ba0b47ba8407",
"type": "Concept",
"name": "human",
},
{
"handle": "bdfe4e7a431f73386f37c6448afe5840",
"type": "Concept",
"name": "mammal",
},
],
},
{
"handle": "f31dfe97db782e8cec26de18dddf8965",
"type": "Inheritance",
"template": ["Inheritance", "Concept", "Concept"],
"targets": [
{
"handle": "1cdffc6b0b89ff41d68bec237481d1e1",
"type": "Concept",
"name": "monkey",
},
{
"handle": "bdfe4e7a431f73386f37c6448afe5840",
"type": "Concept",
"name": "mammal",
},
],
},
]
Remote DAS
This way it'ss possible to make queries in your local memory and on the remote machine that you need to pass during the creation of DAS instance. See below:
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace(query_engine='remote', host='192.32.11.45', port=9000)
In the query method is possible pass query_scope parameter with four available values. This specifying whether you want to make the query local, remote, local and remote or synchronize and remote. If you don't pass the default is "remote_only"
- "local_only"
- Only local query
- "remote_only"
- Only remote query
- "local_and_remote"
- This type is not available yet. So, this will raise an exception
- "synchronous_update"
- Before make query it will commit your local changes and then make the remote query
Local Scope
query = {
'atom_type': 'link',
'type': 'Inheritance',
'targets': [
{'atom_type': 'node', 'type': 'Concept', 'name': 'humana'},
{'atom_type': 'node', 'type': 'Concept', 'name': 'mammala'},
]
}
query_params = {
"toplevel_only": False,
"query_scope": "local_only"
}
resp = das.query(query, query_params)
print(resp)
[]
Remote scope
query = {
'atom_type': 'link',
'type': 'Inheritance',
'targets': [
{'atom_type': 'node', 'type': 'Concept', 'name': 'human'},
{'atom_type': 'node', 'type': 'Concept', 'name': 'mammal'},
]
}
query_params = {
"toplevel_only": False
}
resp = das.query(query, query_params)
print(resp)
[
{
"handle": "c93e1e758c53912638438e2a7d7f7b7f",
"type": "Inheritance",
"template": ["Inheritance", "Concept", "Concept"],
"targets": [
{
"handle": "af12f10f9ae2002a1607ba0b47ba8407",
"type": "Concept",
"name": "human",
},
{
"handle": "bdfe4e7a431f73386f37c6448afe5840",
"type": "Concept",
"name": "mammal",
},
],
}
]
Remote scope synchronized with local Atoms
# Add a local Link
das.add_link({
'type': 'Inheritance',
'targets': [
{'type': 'Concept', 'name': 'monkey'},
{'type': 'Concept', 'name': 'mammal'}
]
})
query = {
'atom_type': 'link',
'type': 'Inheritance',
'targets': [
{'atom_type': 'node', 'type': 'Concept', 'name': 'human'},
{'atom_type': 'node', 'type': 'Concept', 'name': 'mammal'},
]
}
query_params = {
"toplevel_only": False,
"query_scope": "synchronous_update"
}
resp = das.query(query, query_params)
print(resp)
[
{
"handle": "c93e1e758c53912638438e2a7d7f7b7f",
"type": "Inheritance",
"template": ["Inheritance", "Concept", "Concept"],
"targets": [
{
"handle": "af12f10f9ae2002a1607ba0b47ba8407",
"type": "Concept",
"name": "human",
},
{
"handle": "bdfe4e7a431f73386f37c6448afe5840",
"type": "Concept",
"name": "mammal",
},
],
},
{
"handle": "f31dfe97db782e8cec26de18dddf8965",
"type": "Inheritance",
"template": ["Inheritance", "Concept", "Concept"],
"targets": [
{
"handle": "1cdffc6b0b89ff41d68bec237481d1e1",
"type": "Concept",
"name": "monkey",
},
{
"handle": "bdfe4e7a431f73386f37c6448afe5840",
"type": "Concept",
"name": "mammal",
},
],
},
]
Traverse
from hyperon_das import DistributedAtomSpace
das = DistributedAtomSpace(query_engine='remote', host='192.32.11.45', port=9000)
traverse = das.get_traversal_cursor(handle='12345', handles_only=True)
current_cursor = traverse.get()
links = traverse.get_links(link_type='Similarity', cursor_position=0, target_type='Concept')
neighbors = traverse.get_neighbors(link_type='Inheritance', target_type='Concept')
traverse.follow_link(link_type='Similarity', unique_path=True)
traverse.goto(handle='9990')
Tests
You can run the command below to run the unit tests
make test-unit
Release Notes
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file hyperon_das-0.7.12.tar.gz
.
File metadata
- Download URL: hyperon_das-0.7.12.tar.gz
- Upload date:
- Size: 36.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.12.3 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42b86e4e2637e8adae1d12afc95589ff9d12a20f9a8b49ea01fbb109234b3b96 |
|
MD5 | 977567a78e08a4f984afb7c5b018f77a |
|
BLAKE2b-256 | 0cf206043dc98fc570bfa6db72f61f53860989c6379dd0458248a7eca313bc80 |
File details
Details for the file hyperon_das-0.7.12-py3-none-any.whl
.
File metadata
- Download URL: hyperon_das-0.7.12-py3-none-any.whl
- Upload date:
- Size: 40.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.12.3 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e93e15275e23f9b3413813375ae66909a9516fedf6889289aeb6e84d4ee64c92 |
|
MD5 | c339d77d999284a2010a1428b74d3b34 |
|
BLAKE2b-256 | af6e23041a9ffa2a7fc1d7bc4f4e32cd73fa2862b72aa1cb63cb6707e761d82f |