Skip to main content

Multidimensional data analysis toolbox

Project description

Azure Github Drone rtd Codecov

python_version pypi_version anaconda_cloud

gitter DOI

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays of a given signal (for example, a 2D array of spectra, also known as a spectrum image).

HyperSpy makes it straightforward to apply analytical procedures that operate on an individual signal to multidimensional arrays, as well as providing easy access to analytical tools that exploit the multidimensionality of the dataset.

Its modular structure makes it easy to add features to analyze many different types of signals.

HyperSpy is released under the GPL v3 license.

Since version 0.8.4, HyperSpy only supports Python 3. If you need to install HyperSpy in Python 2.7, please install version 0.8.3.

Contributing

Everyone is welcome to contribute. Please read our contributing guidelines and get started!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hyperspy-1.7.4.tar.gz (31.6 MB view details)

Uploaded Source

Built Distributions

hyperspy-1.7.4-cp310-cp310-win_amd64.whl (32.6 MB view details)

Uploaded CPython 3.10Windows x86-64

hyperspy-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (32.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.24+ x86-64

hyperspy-1.7.4-cp310-cp310-macosx_11_0_x86_64.whl (32.6 MB view details)

Uploaded CPython 3.10macOS 11.0+ x86-64

hyperspy-1.7.4-cp39-cp39-win_amd64.whl (32.6 MB view details)

Uploaded CPython 3.9Windows x86-64

hyperspy-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (32.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.24+ x86-64

hyperspy-1.7.4-cp39-cp39-macosx_11_0_x86_64.whl (32.6 MB view details)

Uploaded CPython 3.9macOS 11.0+ x86-64

hyperspy-1.7.4-cp38-cp38-win_amd64.whl (32.6 MB view details)

Uploaded CPython 3.8Windows x86-64

hyperspy-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (32.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.24+ x86-64

hyperspy-1.7.4-cp38-cp38-macosx_10_15_x86_64.whl (32.6 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

hyperspy-1.7.4-cp37-cp37m-win_amd64.whl (32.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

hyperspy-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (32.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.24+ x86-64

hyperspy-1.7.4-cp37-cp37m-macosx_10_15_x86_64.whl (32.6 MB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

File details

Details for the file hyperspy-1.7.4.tar.gz.

File metadata

  • Download URL: hyperspy-1.7.4.tar.gz
  • Upload date:
  • Size: 31.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for hyperspy-1.7.4.tar.gz
Algorithm Hash digest
SHA256 fb5dda43f4af612831799c89b0a953147f6325a064d06144105e6911a30baa5d
MD5 15b7f901c13af5a913ca5f6d1daac422
BLAKE2b-256 deb3136e1d6472e09bbe9579cc807557f0c31ab1610ccb57c67edb6221b104fa

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: hyperspy-1.7.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 32.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for hyperspy-1.7.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7b53baf37f694bcea415a535d0c82c8953a338ce21891da0dfdb7a2747017140
MD5 533bddd0dce25dd05e0e639c5916be72
BLAKE2b-256 c7d7592248a2a24c607c7968dc66d628394f48820db28e35a816683ead33a03b

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 98d3e611dae0c66f33dada0b6751744ebf7f753e0b1f4a10e87bee02695f3208
MD5 3261f250bd332a626bdc26b37ff616bd
BLAKE2b-256 c00d88d4e5665309e96201838be918329267f95b28aec607316fd7ee3e683537

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 99ae5af1aede89c29298fa097382b3a7ccf60392aae69773d1c5421de7274474
MD5 58779d0e9410423cdd13df07f273ad72
BLAKE2b-256 e4a323fb58baf69788fac8c84dfc5e5b75748952fce8a7898df4c450746ea39a

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: hyperspy-1.7.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 32.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for hyperspy-1.7.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e49c35e1bd1d5bb24b812226fcda41083a0cbf522910e894780cd9eaad92afcf
MD5 ec69870c804431dcb7d5d843ee4406d7
BLAKE2b-256 eaae87af3775eeabc7c96e91d5bba9411c8a8be379e9de25f39d45e6164395ea

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 c0874f5d4f3f043b92b198f1b66fd3505bf35e9bbbd74bff191de3ed6e721795
MD5 a5bdd1923040ddd1387b9982813299a0
BLAKE2b-256 fad2573a36cc3baa7d8da0fd31028850bcf4db85c13505b1d62380bf920370ae

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8e1a5a7e2961fda3464edb8b4e6d376cf8bf28c7b2c1d15092d0693f87413d94
MD5 d46079e9cc8676b5d26251a3f7269a1d
BLAKE2b-256 5761416d453fd89e4faf6a128f5dd8f60fac58033717b0274c29496caf0853da

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: hyperspy-1.7.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 32.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for hyperspy-1.7.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6158673c2c2d0b5b64dead0f414a3062eda58be22dff6d1bb513b5c20bd7236a
MD5 77d2aeefd01deb8c5f0d85543d255f9b
BLAKE2b-256 61faeba5dccb2366696c48e69c9ce9e092f447cd34a17aa490c18ce5bd479182

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 27bf19820c267df980e92c07f129a6065bf34fe548dc2d673a4cfae80e5742d4
MD5 897d692fd7b2ef6f91a1145e31f87e1f
BLAKE2b-256 618b81ea7d18864fe3a1d35afe9b3e74c958f66d56ceb60a2a192ecf179903cf

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aacb3014ae4bd596f811392bc637cbc6d5ac497af9137166e9e152a93316249f
MD5 98c4afa99a65932569a075b756057e93
BLAKE2b-256 f28c0b62018ec0e3b0745bf31b95f02d53c215c7a1944dbc0fc94d250ee2f392

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: hyperspy-1.7.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 32.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for hyperspy-1.7.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 39749c7cbffa1bf16ed99399648951d49aca4bfe42f1ff20f67d2cf042f864c5
MD5 b737739fd4ebb0ef3ba38c153ab3e25e
BLAKE2b-256 6ce13f57bf93252a1a1664c677d78d6927cae07016c6bb30ce7aa94d80ff3d2b

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 987f98f076d71283bf4cc81f622616b80eb10f0cd3e7df9a4301142946aeb4bd
MD5 8ba00bccbb4d641cc7b16e7cb7f88bd1
BLAKE2b-256 7e9f59e0476771131a91c29b3ce5cd46f4810b5ea54be85a120aed4159f7956a

See more details on using hashes here.

File details

Details for the file hyperspy-1.7.4-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for hyperspy-1.7.4-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c59762cf51325c667480b9f17a20c392baa45d0895b054343343cadb6ee300b6
MD5 1969db88ae3988512e45aeb7dc5d4efa
BLAKE2b-256 884d88b13c0f8dc1f387095b9b1d5835490329650aab7f22f11a7149162181b3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page