Skip to main content

Level-up your Hypothesis tests with CrossHair.

Project description

hypothesis-crosshair

Downloads

Add the power of solver-based symbolic execution to your Hypothesis tests with CrossHair.

Just

pip install hypothesis-crosshair

and then add a backend="crosshair" setting, like so:

from hypothesis import given, settings, strategies as st

@settings(backend="crosshair")
@given(st.integers())
def test_needs_solver(x):
    assert x != 123456789

Docs hopefully coming soon. In the meantime, start a discussion or file an issue.

FAQ

Can I try using crosshair for ALL my hypothesis tests?

Yes! Create or edit your pytest conftest.py file to register a profile like the following:

from hypothesis import settings

settings.register_profile(
    "crosshair",
    backend="crosshair",
)

And then run pytest using the profile you've defined:

pytest . --hypothesis-profile=crosshair 

Changelog

0.0.15

  • Integrate hypothesis's new BackCannotProceed exception, which will reduce the likelihood of FlakeyReplay errors.
  • Validate suspected counterexamples with concrete executions.
  • Treat nondeterminism as an unexplored path rather than a user error. (though we might change this back later)
  • Ensure realization logic called by hypothesis cannot grow the path tree.
  • Allow for collapsing more SMT expressions when drawing strings and floats.

0.0.14

  • Support the revised hypothesis provider draw interfaces as of hypothesis v6.112.0.

0.0.13

0.0.12

  • Error early when trying to nest hypothesis tests. (which will otherwise put CrossHair into a bad state)

0.0.11

  • Address errors when the solver can't keep up (fixes #20)

0.0.10

  • Reduce the numebr of iterations required to generate valid datetimes

0.0.9

  • Quietly ignore iterations that appear to be failing due to symbolic intolerance.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypothesis_crosshair-0.0.16.tar.gz (9.2 kB view hashes)

Uploaded Source

Built Distribution

hypothesis_crosshair-0.0.16-py3-none-any.whl (10.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page