Skip to main content

Hypothesis strategies for RDKit

Project description

hypothesis-rdkit

A strategy to generate random molecules for the hypothesis testing framework. It uses a collection of fragments generated from the ChEMBL database to construct plausible molecular graphs. The fragments were mined using the BRICS method.

demo

Installation

pip install -U hypothesis-rdkit
# or
conda install -c conda-forge hypothesis-rdkit

Usage

The module hypothesis-rdkit provides a strategy for generating RDKit molecules. During the installation of the package, this strategy is linked to the rdkit.Chem.Mol type:

from hypothesis import given
from rdkit.Chem import Mol

@given(...)
def test_molecule_method(mol : Mol):
    # mol is a randomly generated molecule
    assert mol.GetNumAtoms() > 0

You can use the mols strategy directly for further customization:

from hypothesis import given
from hypothesis_rdkit import mols
from rdkit.Chem import GetMolFrags, Mol
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds

@given(mols(n_connected_components=2, max_rotatable_bonds=5, n_conformers=10))
def test_molecule_mixtures(mol : Mol):
    frags = GetMolFrags(mol, asMols=True)
    assert len(frags) == 2

    for frag in frags:
        assert CalcNumRotatableBonds(frag) <= 5

    assert mol.GetNumConformers() <= 10

There are also strategies to generate molecules in SMILES, mol block or InChI representation accepting the same parameters as mols:

from hypothesis import given
from hypothesis_rdkit import smiles, mol_blocks, inchis
from rdkit.Chem import MolFromSmiles, MolFromMolBlock, MolFromInchi

@given(smiles())
def test_smiles(smiles : str):
    mol = MolFromSmiles(smiles)
    assert mol is not None and mol.GetNumAtoms() > 0

@given(mol_blocks())
def test_mol_block(mol_block : str):
    mol = MolFromMolBlock(mol_block)
    assert mol is not None and mol.GetNumAtoms() > 0

@given(inchis())
def test_inchi(inchi : str):
    mol = MolFromInchi(inchi)
    assert mol is not None and mol.GetNumAtoms() > 0

Development

All fragment files are generated during a test run (pytest) in the user data directory. On Linux, this is ~/.local/share/hypothesis_rdkit/{version}/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypothesis-rdkit-0.6.1.tar.gz (50.9 MB view details)

Uploaded Source

Built Distribution

hypothesis_rdkit-0.6.1-py3-none-any.whl (51.1 MB view details)

Uploaded Python 3

File details

Details for the file hypothesis-rdkit-0.6.1.tar.gz.

File metadata

  • Download URL: hypothesis-rdkit-0.6.1.tar.gz
  • Upload date:
  • Size: 50.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for hypothesis-rdkit-0.6.1.tar.gz
Algorithm Hash digest
SHA256 82e873915f32519cb0170a7c6cc89543380ba898262e82829f49b6113480da17
MD5 085b3fefb82f04d99b3a012337122870
BLAKE2b-256 c247c0a0b53f10422c5f46dc66c99bbd812ae41dbd1dc0c0d11cf9346a82c815

See more details on using hashes here.

File details

Details for the file hypothesis_rdkit-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for hypothesis_rdkit-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4b7fbc47ffad2bdbd2df382888acce0f3013d3ccd16f69facf4c7336eade1aaa
MD5 9f027778398168ffcb91cff704cfd84f
BLAKE2b-256 187fd0cdbe909270fb378b5e454660215ad5585f0c2285e12019a0a5e9ac17af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page