Skip to main content

``hypothesis`` strategies for ``SQLAlchemy`` objects and data from them.

Project description

hypothesis_sqlalchemy

In what follows python is an alias for python3.7 or pypy3.7 or any later version (python3.8, pypy3.8 and so on).

Installation

Install the latest pip & setuptools packages versions

python -m pip install --upgrade pip setuptools

User

Download and install the latest stable version from PyPI repository

python -m pip install --upgrade hypothesis_sqlalchemy

Developer

Download the latest version from GitHub repository

git clone https://github.com/lycantropos/hypothesis_sqlalchemy.git
cd hypothesis_sqlalchemy

Install dependencies

python -m pip install -r requirements.txt

Install

python setup.py install

Usage

With setup

>>> import warnings
>>> from hypothesis.errors import NonInteractiveExampleWarning
>>> # ignore hypothesis warnings caused by `example` method call
... warnings.filterwarnings('ignore', category=NonInteractiveExampleWarning)

let's take a look at what can be generated and how.

Tables

We can write a strategy that produces tables

>>> from hypothesis_sqlalchemy import scheme
>>> from sqlalchemy.engine.default import DefaultDialect
>>> dialect = DefaultDialect()
>>> tables = scheme.tables(dialect,
...                        min_size=3,
...                        max_size=10)
>>> table = tables.example()
>>> from sqlalchemy.schema import Table
>>> isinstance(table, Table)
True
>>> from sqlalchemy.schema import Column
>>> all(isinstance(column, Column) for column in table.columns)
True
>>> 3 <= len(table.columns) <= 10
True

Records

Suppose we have a table

>>> from sqlalchemy.schema import (Column,
...                                MetaData,
...                                Table)
>>> from sqlalchemy.sql.sqltypes import (Integer,
...                                      String)
>>> metadata = MetaData()
>>> user_table = Table('user', metadata,
...                    Column('user_id', Integer,
...                           primary_key=True),
...                    Column('user_name', String(16),
...                           nullable=False),
...                    Column('email_address', String(60)),
...                    Column('password', String(20),
...                           nullable=False))

and we can write strategy that

  • produces single records (as tuples)
    >>> from hypothesis import strategies
    >>> from hypothesis_sqlalchemy.sample import table_records
    >>> records = table_records(user_table, 
    ...                         email_address=strategies.emails())
    >>> record = records.example()
    >>> isinstance(record, tuple)
    True
    >>> len(record) == len(user_table.columns)
    True
    >>> all(column.nullable and value is None
    ...     or isinstance(value, column.type.python_type) 
    ...     for value, column in zip(record, user_table.columns))
    True
    
  • produces records lists (with configurable list size bounds)
    >>> from hypothesis_sqlalchemy.sample import table_records_lists
    >>> records_lists = table_records_lists(user_table,
    ...                                     min_size=2,
    ...                                     max_size=5, 
    ...                                     email_address=strategies.emails())
    >>> records_list = records_lists.example()
    >>> isinstance(records_list, list)
    True
    >>> 2 <= len(records_list) <= 5
    True
    >>> all(isinstance(record, tuple) for record in records_list)
    True
    >>> all(len(record) == len(user_table.columns) for record in records_list)
    True
    

Development

Bumping version

Preparation

Install bump2version.

Pre-release

Choose which version number category to bump following semver specification.

Test bumping version

bump2version --dry-run --verbose $CATEGORY

where $CATEGORY is the target version number category name, possible values are patch/minor/major.

Bump version

bump2version --verbose $CATEGORY

This will set version to major.minor.patch-alpha.

Release

Test bumping version

bump2version --dry-run --verbose release

Bump version

bump2version --verbose release

This will set version to major.minor.patch.

Running tests

Install dependencies

python -m pip install -r requirements-tests.txt

Plain

pytest

Inside Docker container:

  • with CPython
    docker-compose --file docker-compose.cpython.yml up
    
  • with PyPy
    docker-compose --file docker-compose.pypy.yml up
    

Bash script:

  • with CPython

    ./run-tests.sh
    

    or

    ./run-tests.sh cpython
    
  • with PyPy

    ./run-tests.sh pypy
    

PowerShell script:

  • with CPython
    .\run-tests.ps1
    
    or
    .\run-tests.ps1 cpython
    
  • with PyPy
    .\run-tests.ps1 pypy
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypothesis_sqlalchemy-1.1.0.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

hypothesis_sqlalchemy-1.1.0-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file hypothesis_sqlalchemy-1.1.0.tar.gz.

File metadata

  • Download URL: hypothesis_sqlalchemy-1.1.0.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for hypothesis_sqlalchemy-1.1.0.tar.gz
Algorithm Hash digest
SHA256 48caca6dfc16a8fb09c647b0e1ce94b59a4d6348c78d16343ab03220679e91b6
MD5 9d6df7b96eacd76d3d3f23d3f0d69ccb
BLAKE2b-256 916bc5a5a0034fc28b05f0a39af09623bb799564e872394db4179825c1bd3a43

See more details on using hashes here.

File details

Details for the file hypothesis_sqlalchemy-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for hypothesis_sqlalchemy-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 478d7264f39e8bf03326d993aff54fbcd58109b320b8fae25e7384556cca91da
MD5 c54498ae4808179fc69f35afd43e2385
BLAKE2b-256 a1912ae6129226a2a21e94997c072408ec5460a8f7abed04a64303e85a807deb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page