Skip to main content

``hypothesis`` strategies for ``SQLAlchemy`` objects and data from them.

Project description

hypothesis_sqlalchemy

In what follows python is an alias for python3.6 or pypy3.6 or any later version (python3.7, pypy3.7 and so on).

Installation

Install the latest pip & setuptools packages versions

python -m pip install --upgrade pip setuptools

User

Download and install the latest stable version from PyPI repository

python -m pip install --upgrade hypothesis_sqlalchemy

Developer

Download the latest version from GitHub repository

git clone https://github.com/lycantropos/hypothesis_sqlalchemy.git
cd hypothesis_sqlalchemy

Install dependencies

python -m pip install -r requirements.txt

Install

python setup.py install

Usage

With setup

>>> import warnings
>>> from hypothesis.errors import NonInteractiveExampleWarning
>>> # ignore hypothesis warnings caused by `example` method call
... warnings.filterwarnings('ignore', category=NonInteractiveExampleWarning)

let's take a look at what can be generated and how.

Tables

We can write a strategy that produces tables

>>> from hypothesis_sqlalchemy import scheme
>>> from sqlalchemy.engine.default import DefaultDialect
>>> dialect = DefaultDialect()
>>> tables = scheme.tables(dialect,
...                        min_size=3,
...                        max_size=10)
>>> table = tables.example()
>>> from sqlalchemy.schema import Table
>>> isinstance(table, Table)
True
>>> from sqlalchemy.schema import Column
>>> all(isinstance(column, Column) for column in table.columns)
True
>>> 3 <= len(table.columns) <= 10
True

Records

Suppose we have a table

>>> from sqlalchemy.schema import (Column,
...                                MetaData,
...                                Table)
>>> from sqlalchemy.sql.sqltypes import (Integer,
...                                      String)
>>> metadata = MetaData()
>>> user_table = Table('user', metadata,
...                    Column('user_id', Integer,
...                           primary_key=True),
...                    Column('user_name', String(16),
...                           nullable=False),
...                    Column('email_address', String(60)),
...                    Column('password', String(20),
...                           nullable=False))

and we can write strategy that

  • produces single records (as tuples)
    >>> from hypothesis import strategies
    >>> from hypothesis_sqlalchemy.sample import table_records
    >>> records = table_records(user_table, 
    ...                         email_address=strategies.emails())
    >>> record = records.example()
    >>> isinstance(record, tuple)
    True
    >>> len(record) == len(user_table.columns)
    True
    >>> all(column.nullable and value is None
    ...     or isinstance(value, column.type.python_type) 
    ...     for value, column in zip(record, user_table.columns))
    True
    
  • produces records lists (with configurable list size bounds)
    >>> from hypothesis_sqlalchemy.sample import table_records_lists
    >>> records_lists = table_records_lists(user_table,
    ...                                     min_size=2,
    ...                                     max_size=5, 
    ...                                     email_address=strategies.emails())
    >>> records_list = records_lists.example()
    >>> isinstance(records_list, list)
    True
    >>> 2 <= len(records_list) <= 5
    True
    >>> all(isinstance(record, tuple) for record in records_list)
    True
    >>> all(len(record) == len(user_table.columns) for record in records_list)
    True
    

Development

Bumping version

Preparation

Install bump2version.

Pre-release

Choose which version number category to bump following semver specification.

Test bumping version

bump2version --dry-run --verbose $CATEGORY

where $CATEGORY is the target version number category name, possible values are patch/minor/major.

Bump version

bump2version --verbose $CATEGORY

This will set version to major.minor.patch-alpha.

Release

Test bumping version

bump2version --dry-run --verbose release

Bump version

bump2version --verbose release

This will set version to major.minor.patch.

Running tests

Install dependencies

python -m pip install -r requirements-tests.txt

Plain

pytest

Inside Docker container:

  • with CPython
    docker-compose --file docker-compose.cpython.yml up
    
  • with PyPy
    docker-compose --file docker-compose.pypy.yml up
    

Bash script:

  • with CPython

    ./run-tests.sh
    

    or

    ./run-tests.sh cpython
    
  • with PyPy

    ./run-tests.sh pypy
    

PowerShell script:

  • with CPython
    .\run-tests.ps1
    
    or
    .\run-tests.ps1 cpython
    
  • with PyPy
    .\run-tests.ps1 pypy
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hypothesis_sqlalchemy-1.0.0.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

hypothesis_sqlalchemy-1.0.0-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file hypothesis_sqlalchemy-1.0.0.tar.gz.

File metadata

  • Download URL: hypothesis_sqlalchemy-1.0.0.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.12

File hashes

Hashes for hypothesis_sqlalchemy-1.0.0.tar.gz
Algorithm Hash digest
SHA256 229e88d463b558aa9fc98d08aae8bc779e76c73e83e26b421ec2fe1bdf4b847d
MD5 10158a0fd8acde4976013544dbcaf5da
BLAKE2b-256 d244f85a6d6c98c6eb6057a5a27a7b1e5cd69dac6bcdd3dfebe1cdc10de76dd8

See more details on using hashes here.

File details

Details for the file hypothesis_sqlalchemy-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: hypothesis_sqlalchemy-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.12

File hashes

Hashes for hypothesis_sqlalchemy-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3def854f4333f9cf7874148aea0acb4804c611fb8049bc9565f5997b2c66a86e
MD5 71833e3ddc737f7c34f2ef7a068eab24
BLAKE2b-256 971f8bbf5cdcd086f5b5ef4df931da2eaab11a97949af84bf40d5521e77b48bf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page