Online estimation methods for the irregularly observed autoregressive (iAR) model
Project description
Data sets, functions and scripts with examples to implement online estimation methods for the irregularly observed autoregressive (iAR) model (Eyheramendy et al.(2018) <doi:10.1093/mnras/sty2487>). The online learning algorithms implemented are: gradient descent (IAR_OGD), Newton-step (IAR-ONS) and Kalman filter recursions (IAR-OBR).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
iAROnline-0.0.3.tar.gz
(4.4 kB
view details)
Built Distribution
iAROnline-0.0.3-py3.7.egg
(9.0 kB
view details)
File details
Details for the file iAROnline-0.0.3.tar.gz
.
File metadata
- Download URL: iAROnline-0.0.3.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6e5baaa755ac7f4bbd85614d2019f96c9c73a30ae34854d7f372d7eb7a43991 |
|
MD5 | 930f785c96e5e551b499d63df6527fe2 |
|
BLAKE2b-256 | 690c98b1fb18ffdd7180dd7943c5f1df82baab6e86b15d1efb8bad0f69760eef |
File details
Details for the file iAROnline-0.0.3-py3.7.egg
.
File metadata
- Download URL: iAROnline-0.0.3-py3.7.egg
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a88d4b897a1979840eb076c0ea74e47af0a99846b149dea265f6705ee33797b1 |
|
MD5 | ca1c9c9f338a8f2b31f6302809f5976a |
|
BLAKE2b-256 | 7372315df2ae13a3ff116dcd48d3f91156a309fada359e18b457c80831e56d80 |