Skip to main content

Scoring protein-protein interface using RWGK and SVM

Project description

iScore

Support Vector Machine on Graph Kernel for Ranking Protein-Protein Docking Models

PyPI DOI RSD Build_Test Coverage Status Codacy Badge Documentation Status

alt text

1. Installation

Minimal information to install the module

  • Check if command mpiexec is available or not in your console. If not, download and install openmpi or mpich.
  • Install iScore using pip install iScore

Possible problems:

  • If pip install iScore gives problems on installing mpi4py, try to first install mpi4py using conda install mpi4py and then pip install iScore.

2. Documentation

The documentation of the package can be found at:

3. Quick Examples

iScore offers simple solutions to classify protein-protein interfaces using a support vector machine approach on graph kernels. The simplest way to use iScore is through dedicated binaries that hide the complexity of the approach and allows access to the code with simple command line interfaces. The two binaries are iscore.train and iscore.predict (iscore.train.mpi and iscore.predict.mpi for parallel running) that respectively train a model using a training set and use this model to rank the docking models of a protein-protein complex.

Requirements for preparing data:

  • Use the following file structure

    root/
    |__train/
    |    |__ pdb/
    |    |__ pssm/
    |    |__ class.lst
    |__test/
          |__pdb/
          |__pssm/
          |__ class.lst (optional)
    

    The pdb folder contains the PDB files of docking models, and pssm contains the PSSM files. The class.lst is a list of class ID and PDB file name for each docking model, like 0 7CEI_10w.

         Check the package subfolders `example/train` and `example/test` to see how to prepare your files.
    
  • PDB files and PSSM files must have consistent sequences. PSSMGen can be used to get consistent PSSM and PDB files. It is already installed along with iScore. Check README to see how to use it.

Example 1. Use our trained model

You can directly use our trained model to score your docking conformations. The model we provide is trained on docking benchmark version 4 (BM4) data, in total 234 different structures were used (117 positive and 117 negative). More details see this paper. You can find the model in the package subfolder model/training_set.tar.gz.

To use this model go into your test subfolder and type:

# Without MPI
iScore.predict

# With MPI
mpiexec -n ${NPROC} iScore.predict.mpi

The code will automatically detect the path of the model.

This binary will output the binary class and decision value of the conformations in the test set in a text file iScorePredict.txt.

  For the predicted iScore values, the lower value, the better quality of the conformation.

Example 2. Train your own model

To train the model simply go to your train subfolder and type:

# Without MPI
iScore.train

# With MPI
mpiexec -n ${NPROC} iScore.train.mpi

This binary will generate a archive file called by default training_set.tar.gz that contains all the information needed to predict binary classes of a test set using the trained model.

To use this model go into your test subfolder and type:

# Without MPI
iScore.predict --archive ../train/training_set.tar.gz

# With MPI
mpiexec -n ${NPROC} iScore.predict.mpi --archive ../train/training_set.tar.gz

4. Citation

If you use iScore software, please cite the following articles:

  1. Cunliang Geng, Yong Jung, Nicolas Renaud, Vasant Honavar, Alexandre M J J Bonvin, and Li C Xue.iScore: A Novel Graph Kernel-Based Function for Scoring Protein-Protein Docking Models.” Bioinformatics, 2019, https://doi.org/10.1093/bioinformatics/btz496.
  2. Nicolas Renaud, Yong Jung, Vasant Honavar, Cunliang Geng, Alexandre M. J. J. Bonvin, and Li C. Xue.iScore: An MPI Supported Software for Ranking Protein–Protein Docking Models Based on a Random Walk Graph Kernel and Support Vector Machines.” SoftwareX, 2020, https://doi.org/10.1016/j.softx.2020.100462.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iScore-0.3.5.tar.gz (628.9 kB view details)

Uploaded Source

Built Distribution

iScore-0.3.5-py3-none-any.whl (632.4 kB view details)

Uploaded Python 3

File details

Details for the file iScore-0.3.5.tar.gz.

File metadata

  • Download URL: iScore-0.3.5.tar.gz
  • Upload date:
  • Size: 628.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for iScore-0.3.5.tar.gz
Algorithm Hash digest
SHA256 1ecb5689061e69771200855a1c3388f759ba27cb55f1c7fe0131bafeb169e805
MD5 258556e20fa8d4933335df82e1965d8b
BLAKE2b-256 fa5f244f4fc558c898c1e727df1bdba89285eb6c5b1062887b0df63a3ad72a1f

See more details on using hashes here.

File details

Details for the file iScore-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: iScore-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 632.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.7

File hashes

Hashes for iScore-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 503f9f9170ca5bacfea0b4470467e47f4b3163cf05c71f08cbe37d0a841b191b
MD5 45b623b59b7d91ba9f41136999441494
BLAKE2b-256 ef3d86bc66cd8ddc34f95d0296c49991fc97f3214cf4cd0197817a9ecf988341

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page