Skip to main content

A python implementation of IAMsystem algorithm

Project description

iamsystem

test PyPI version fury.io PyPI license PyPI pyversions Code style: black

A python implementation of IAMsystem algorithm, a fast dictionary-based approach for semantic annotation, a.k.a entity linking.

Installation

pip install iamsystem

Usage

You provide a list of keywords you want to detect in a document, you can add and combine abbreviations, normalization methods (lemmatization, stemming) and approximate string matching algorithms, IAMsystem algorithm performs the semantic annotation.

See the documentation for the configuration details.

Quick example

from iamsystem import Matcher

matcher = Matcher.build(
    keywords=["North America", "South America"],
    stopwords=["and"],
    abbreviations=[("amer", "America")],
    spellwise=[dict(measure="Levenshtein", max_distance=1)],
    w=2,
)
annots = matcher.annot_text(text="Northh and south Amer.")
for annot in annots:
    print(annot)
# Northh Amer	0 6;17 21	North America
# south Amer	11 21	South America

Algorithm

The algorithm was developed in the context of a PhD thesis. It proposes a solution to quickly annotate documents using a large dictionary (> 300K keywords) and fuzzy matching algorithms. No string distance algorithm is implemented in this package, it imports and leverages external libraries like spellwise, pysimstring and nltk. Its algorithmic complexity is O(n(log(m))) with n the number of tokens in a document and m the size of the dictionary. The formalization of the algorithm is available in this paper.

The algorithm was initially developed in Java (https://github.com/scossin/IAMsystem). It has participated in several semantic annotation competitions in the medical field where it has obtained satisfactory results, for example by obtaining the best results in the Codiesp shared task. A dictionary-based model can achieve close performance to a transformer-based model when the task is simple or when the training set is small. Its main advantage is its speed, which allows a baseline to be generated quickly.

Citation

@article{cossin_iam_2018,
	title = {{IAM} at {CLEF} {eHealth} 2018: {Concept} {Annotation} and {Coding} in {French} {Death} {Certificates}},
	shorttitle = {{IAM} at {CLEF} {eHealth} 2018},
	url = {http://arxiv.org/abs/1807.03674},
	urldate = {2018-07-11},
	journal = {arXiv:1807.03674 [cs]},
	author = {Cossin, Sébastien and Jouhet, Vianney and Mougin, Fleur and Diallo, Gayo and Thiessard, Frantz},
	month = jul,
	year = {2018},
	note = {arXiv: 1807.03674},
	keywords = {Computer Science - Computation and Language},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iamsystem-0.6.1.tar.gz (68.2 kB view details)

Uploaded Source

Built Distribution

iamsystem-0.6.1-py3-none-any.whl (56.1 kB view details)

Uploaded Python 3

File details

Details for the file iamsystem-0.6.1.tar.gz.

File metadata

  • Download URL: iamsystem-0.6.1.tar.gz
  • Upload date:
  • Size: 68.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for iamsystem-0.6.1.tar.gz
Algorithm Hash digest
SHA256 f5200c6969984c3d286fee021c22d327afee0444c6702eba0e14e459e18f8221
MD5 d05e90ac8693960cdac6c6d53af2239b
BLAKE2b-256 55d0c30ede1487a9218c80cc709c138ea96f9367c4f4b2205eea46903128f08d

See more details on using hashes here.

File details

Details for the file iamsystem-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: iamsystem-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 56.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for iamsystem-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6576c21d860d954e8be39fb7e9c7bc540293df51f01f7f52d483abab0c7aa173
MD5 408f350582e49e121c7673ce59f8e627
BLAKE2b-256 7da34598df7318de97d46e84639299c8c6342a3badf5f0a3eae2b99daadfaf3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page