Skip to main content

A python implementation of IAMsystem algorithm

Project description

iamsystem

test Linux PyPI version fury.io PyPI license PyPI pyversions Code style: black

A python implementation of IAMsystem algorithm, a fast dictionary-based approach for semantic annotation, a.k.a entity linking.

Installation

pip install iamsystem

Usage

You provide a list of keywords you want to detect in a document, you can add and combine abbreviations, normalization methods (lemmatization, stemming) and approximate string matching algorithms, IAMsystem algorithm performs the semantic annotation.

See the documentation for the configuration details.

Quick example

from iamsystem import Matcher

matcher = Matcher.build(
    keywords=["North America", "South America"],
    stopwords=["and"],
    abbreviations=[("amer", "America")],
    spellwise=[dict(measure="Levenshtein", max_distance=1)],
    w=2,
)
annots = matcher.annot_text(text="Northh and south Amer.")
for annot in annots:
    print(annot)
# Northh Amer	0 6;17 21	North America
# south Amer	11 21	South America

Algorithm

The algorithm was developed in the context of a PhD thesis. It proposes a solution to quickly annotate documents using a large dictionary (> 300K keywords) and fuzzy matching algorithms. No string distance algorithm is implemented in this package, it imports and leverages external libraries like spellwise, pysimstring and nltk. Its algorithmic complexity is O(n(log(m))) with n the number of tokens in a document and m the size of the dictionary. The formalization of the algorithm is available in this paper.

The algorithm was initially developed in Java (https://github.com/scossin/IAMsystem). It has participated in several semantic annotation competitions in the medical field where it has obtained satisfactory results, for example by obtaining the best results in the Codiesp shared task. A dictionary-based model can achieve close performance to a transformer-based model when the task is simple or when the training set is small. Its main advantage is its speed, which allows a baseline to be generated quickly.

Citation

@article{cossin_iam_2018,
	title = {{IAM} at {CLEF} {eHealth} 2018: {Concept} {Annotation} and {Coding} in {French} {Death} {Certificates}},
	shorttitle = {{IAM} at {CLEF} {eHealth} 2018},
	url = {http://arxiv.org/abs/1807.03674},
	urldate = {2018-07-11},
	journal = {arXiv:1807.03674 [cs]},
	author = {Cossin, Sébastien and Jouhet, Vianney and Mougin, Fleur and Diallo, Gayo and Thiessard, Frantz},
	month = jul,
	year = {2018},
	note = {arXiv: 1807.03674},
	keywords = {Computer Science - Computation and Language},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iamsystem-0.3.0.tar.gz (59.0 kB view details)

Uploaded Source

Built Distribution

iamsystem-0.3.0-py3-none-any.whl (50.3 kB view details)

Uploaded Python 3

File details

Details for the file iamsystem-0.3.0.tar.gz.

File metadata

  • Download URL: iamsystem-0.3.0.tar.gz
  • Upload date:
  • Size: 59.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.7

File hashes

Hashes for iamsystem-0.3.0.tar.gz
Algorithm Hash digest
SHA256 f888a6c5de0a24eaa2b5510d5dc7b792959ca5a47b98bfcf7a32888f91867dcf
MD5 cb1392b538a3ef634a8bae0cdc48a85f
BLAKE2b-256 465446a3a19c96b5e44cfe0bb68ae8232f21ad7adb09b2a5a12b08d541e19223

See more details on using hashes here.

File details

Details for the file iamsystem-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: iamsystem-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 50.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.7

File hashes

Hashes for iamsystem-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 05d4f917678beaf778374106ef14937994c08ee179611bc1be7bbda3250a5615
MD5 6d7801b43beb6cde7cc103942e8fb5ba
BLAKE2b-256 7295a43daa777cd94e9f0c4857399820e24dcab08593ec458977fd0b138aa7ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page