Irregularly Observed Autoregressive Models
Project description
iAR package
Description
Data sets, functions and scripts with examples to implement autoregressive models for irregularly observed time series. The models available in this package are the irregular autoregressive model (Eyheramendy et al.(2018)), the complex irregular autoregressive model (Elorrieta et al.(2019)) and the bivariate irregular autoregressive model (Elorrieta et al.(2021)).
Contents
- Irregular Autoregressive (IAR) Model [1]
- Complex Irregular Autoregressive (CIAR) Model [2]
- Bivariate Irregular Autoregressive (BIAR) Model [3]
Instalation
Dependencies:
numpy
pandas
scipy
matplotlib
sklearn
statsmodels
Install from PyPI using:
pip install iar
or clone this github and do:
python setup.py install --user
Examples
Authors
- Felipe Elorrieta (felipe.elorrieta@usach.cl) (Millennium Institute of Astrophysics and Universidad de Santiago de Chile)
- Cesar Ojeda (Universidad del Valle - Colombia)
- Susana Eyheramendy (Millennium Institute of Astrophysics and Universidad Adolfo Ibañez)
- Wilfredo Palma (Millennium Institute of Astrophysics)
Acknowledgments
The authors acknowledge support from the ANID – Millennium Science Initiative Program – ICN12_009 awarded to the Millennium Institute of Astrophysics MAS (www.astrofisicamas.cl)
References
[1] Eyheramendy S, Elorrieta F, Palma W (2018). “An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves.” Monthly Notices of the Royal Astronomical Society, 481(4), 4311–4322. ISSN 0035-8711, doi: 10.1093/mnras/sty2487, https://academic.oup.com/mnras/article-pdf/481/4/4311/25906473/sty2487.pdf.
[2] Elorrieta, F, Eyheramendy, S, Palma, W (2019). “Discrete-time autoregressive model for unequally spaced time-series observations.” A& A, 627, A120. doi: 10.1051/00046361/201935560, https://doi.org/10.1051/0004-6361/201935560.
[3] Elorrieta, F, Eyheramendy, S, Palma, W, Ojeda, C (2021).A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series, Monthly Notices of the Royal Astronomical Society, 505 (1),1105–1116,https://doi.org/10.1093/mnras/stab1216
[4] Jordán A, Espinoza N, Rabus M, Eyheramendy S, Sing DK, Désert J, Bakos GÁ, Fortney JJ, LópezMorales M, Maxted PFL, Triaud AHMJ, Szentgyorgyi A (2013). “A Ground-based Optical Transmission Spectrum of WASP-6b.” The Astrophysical Journal, 778, 184. doi: 10.1088/0004637X/ 778/2/184, 1310.6048, https://doi.org/10.1088/0004-637X/778/2/184.
[5] Lira P, Arévalo P, Uttley P, McHardy IMM, Videla L (2015). “Long-term monitoring of the archetype Seyfert galaxy MCG-6-30-15: X-ray, optical and near-IR variability of the corona, disc and torus.” Monthly Notices of the Royal Astronomical Society, 454(1), 368–379. ISSN 0035-8711, doi: 10.1093/mnras/stv1945, https://doi.org/10.1093/mnras/stv1945.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file iar-1.2.9.tar.gz
.
File metadata
- Download URL: iar-1.2.9.tar.gz
- Upload date:
- Size: 33.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bb88066a45224ea05b0aa5524d5b1051af62748e79ba4b6dbfcaeede85f2392 |
|
MD5 | 2278a556d0005140e77b5dc0ac2f840d |
|
BLAKE2b-256 | adbc98709f9285bb442b1f3a325c90d569eb584dc6c2ac4a56fd652805cdd746 |
File details
Details for the file iar-1.2.9-py3-none-any.whl
.
File metadata
- Download URL: iar-1.2.9-py3-none-any.whl
- Upload date:
- Size: 33.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94d6b976c7a2c1487bee5c959eb8e57e055e31cdb86a305ebcd7fc1820802ab2 |
|
MD5 | aa580f578138e0b12de36df4919332d5 |
|
BLAKE2b-256 | f9ca160de57da8ad6083b275262b9db07fa6488cbb6dc9fd59d7589292763bec |