Skip to main content

Irregularly Observed Autoregressive Models

Project description

iAR package

Description

Data sets, functions and scripts with examples to implement autoregressive models for irregularly observed time series. The models available in this package are the irregular autoregressive model (Eyheramendy et al.(2018)), the complex irregular autoregressive model (Elorrieta et al.(2019)) and the bivariate irregular autoregressive model (Elorrieta et al.(2021)).

Contents

  • Irregular Autoregressive (IAR) Model [1]
  • Complex Irregular Autoregressive (CIAR) Model [2]
  • Bivariate Irregular Autoregressive (BIAR) Model [3]

Instalation

Dependencies:

numpy
pandas
scipy
matplotlib
sklearn
statsmodels

Install from PyPI using:

pip install iar

or clone this github and do:

python setup.py install --user

Examples

  • IAR Model demo here
  • CIAR Model demo here
  • BIAR Model demo here

Authors

  • Felipe Elorrieta (felipe.elorrieta@usach.cl) (Millennium Institute of Astrophysics and Universidad de Santiago de Chile)
  • Cesar Ojeda (Universidad del Valle - Colombia)
  • Susana Eyheramendy (Millennium Institute of Astrophysics and Universidad Adolfo Ibañez)
  • Wilfredo Palma (Millennium Institute of Astrophysics)

Acknowledgments

The authors acknowledge support from the ANID – Millennium Science Initiative Program – ICN12_009 awarded to the Millennium Institute of Astrophysics MAS (www.astrofisicamas.cl)

References

[1] Eyheramendy S, Elorrieta F, Palma W (2018). “An irregular discrete time series model to identify residuals with autocorrelation in astronomical light curves.” Monthly Notices of the Royal Astronomical Society, 481(4), 4311–4322. ISSN 0035-8711, doi: 10.1093/mnras/sty2487, https://academic.oup.com/mnras/article-pdf/481/4/4311/25906473/sty2487.pdf.

[2] Elorrieta, F, Eyheramendy, S, Palma, W (2019). “Discrete-time autoregressive model for unequally spaced time-series observations.” A& A, 627, A120. doi: 10.1051/00046361/201935560, https://doi.org/10.1051/0004-6361/201935560.

[3] Elorrieta, F, Eyheramendy, S, Palma, W, Ojeda, C (2021).A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series, Monthly Notices of the Royal Astronomical Society, 505 (1),1105–1116,https://doi.org/10.1093/mnras/stab1216

[4] Jordán A, Espinoza N, Rabus M, Eyheramendy S, Sing DK, Désert J, Bakos GÁ, Fortney JJ, LópezMorales M, Maxted PFL, Triaud AHMJ, Szentgyorgyi A (2013). “A Ground-based Optical Transmission Spectrum of WASP-6b.” The Astrophysical Journal, 778, 184. doi: 10.1088/0004637X/ 778/2/184, 1310.6048, https://doi.org/10.1088/0004-637X/778/2/184.

[5] Lira P, Arévalo P, Uttley P, McHardy IMM, Videla L (2015). “Long-term monitoring of the archetype Seyfert galaxy MCG-6-30-15: X-ray, optical and near-IR variability of the corona, disc and torus.” Monthly Notices of the Royal Astronomical Society, 454(1), 368–379. ISSN 0035-8711, doi: 10.1093/mnras/stv1945, https://doi.org/10.1093/mnras/stv1945.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iar-1.2.9.tar.gz (33.5 kB view details)

Uploaded Source

Built Distribution

iar-1.2.9-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file iar-1.2.9.tar.gz.

File metadata

  • Download URL: iar-1.2.9.tar.gz
  • Upload date:
  • Size: 33.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for iar-1.2.9.tar.gz
Algorithm Hash digest
SHA256 2bb88066a45224ea05b0aa5524d5b1051af62748e79ba4b6dbfcaeede85f2392
MD5 2278a556d0005140e77b5dc0ac2f840d
BLAKE2b-256 adbc98709f9285bb442b1f3a325c90d569eb584dc6c2ac4a56fd652805cdd746

See more details on using hashes here.

File details

Details for the file iar-1.2.9-py3-none-any.whl.

File metadata

  • Download URL: iar-1.2.9-py3-none-any.whl
  • Upload date:
  • Size: 33.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for iar-1.2.9-py3-none-any.whl
Algorithm Hash digest
SHA256 94d6b976c7a2c1487bee5c959eb8e57e055e31cdb86a305ebcd7fc1820802ab2
MD5 aa580f578138e0b12de36df4919332d5
BLAKE2b-256 f9ca160de57da8ad6083b275262b9db07fa6488cbb6dc9fd59d7589292763bec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page