Skip to main content

Python utilities for IBM Watson Studio Pipelines

Project description

IBM Watson Studio Pipelines Python Client

This package provides various utilities for working with IBM Watson Studio Pipelines. Its primary usage is to enable users to store artifact results of a notebook run.

Usage

Construction

WSPipelines client is constructed from IAM APIKEY, which can be provided in a few ways:

  • explicitly:

    from ibm_watson_studio_pipelines import WSPipelines
    
    client = WSPipelines(apikey)
    # or
    client = WSPipelines.from_apikey(apikey)
    # or
    client = WSPipelines.from_token(token)
    
  • implicitly:

    APIKEY=...
    export APIKEY
    

    or

    USER_ACCESS_TOKEN=...
    export USER_ACCESS_TOKEN
    
    from ibm_watson_studio_pipelines import WSPipelines
    
    # use APIKEY
    client = WSPipelines.from_apikey()
    
    # use USER_ACCESS_TOKEN
    client = WSPipelines.from_token()
    
    # try APIKEY, if absent then USER_ACCESS_TOKEN:
    client = WSPipelines()
    # or
    client = WSPipelines.new_instance()
    

All of the above may also define service_name and url.

The exact procedure of deciding which authentication method to use:

  1. If from_apikey or from_token is used, the method is forced.
  2. If constructor is used but either apikey or bearer_token argument was provided, that method will be forced (if both are present, an overloading error will be raised). Note that providing a nameless argument is equivalent to providing apikey.
  3. If constructor or new_instance is used, APIKEY env-var is used.
  4. If constructor or new_instance is used, but APIKEY env-var is not present, USER_ACCESS_TOKEN env-var is used.
  5. If none of the above matches, an error is returned.

Usage in Python notebooks

Notebooks run in IBM Watson Studio Pipelines get inputs and expose outputs as a node:

{
  "id": ...,
  "type": "execution_node",
  "op": "run_container",
  "app_data": {
    "pipeline_data": {
      "name": ...,
      "config": {
        "link": {
          "component_id_ref": "run-notebook"
        }
      },
      "inputs": [
        ...,
        {
          "name": "model_name",
          "group": "env_variables",
          "type": "String",
          "value_from": ...
        }
      ],
      "outputs": [
        {
          "name": "trained_model",
          "group": "output_variables",
          "type": {
            "CPDPath": {
              "path_type": "resource",
              "resource_type": "asset",
              "asset_type": "wml_model"
            }
          }
        }
      ]
    }
  },
  ...
}

Inside of the notebook, inputs are available as environmental variables:

model_name = os.environ['model_name']

Outputs are exposed using sdk method, store_results:

client = WSPipelines.from_apikey(...)
client.store_results({
  "trained_model": ... // cpd path to the trained model
})

Extracting credentials

On public cloud, this client provides a method for easy retrieval of WML instance credentials and scope storage credentials:

client.get_wml_credentials() # the scope passed in notebook
# or
client.get_wml_credentials("cpd:///projects/123456789")
client.get_storage_credentials() # the scope passed in notebook
# or
client.get_storage_credentials("cpd:///projects/123456789")

Note how the result will vary depending on the authentication method used to create the client.

CPD-Path manipulation

CPD-Path parsing is manipulation is also supported:

from ibm_watson_studio_pipelines import CpdScope, WSPipelines

client = WSPipelines.from_apikey()

scope = CpdScope.from_string("cpd:///projects/123456789")

assert scope.scope_type() == "projects"
assert scope.scope_id() == "123456789"

client.get_wml_credentials(scope)

Different kinds of CPD-Paths will have different properties, providing the same interface across scopes, resource and file paths:

from ibm_watson_studio_pipelines import CpdPath

scope_file_path = CpdPath.from_string("cpd:///projects/123456789/files/abc/def")
assert scope_file_path.scope_type() == "projects"
assert scope_file_path.scope_id() == "123456789"
assert scope_file_path.file_path() == "/abc/def"

connection_path = CpdPath.from_string("cpd:///projects/123456789/connections/3141592")
assert connection_path.scope_type() == "projects"
assert connection_path.scope_id() == "123456789"
assert connection_path.resource_type() == "connections"
assert connection_path.resource_id() == "3141592"

connection_file_path = CpdPath.from_string("cpd:///projects/123456789/connections/3141592/files/~/abc/def")
assert connection_file_path.scope_type() == "projects"
assert connection_file_path.scope_id() == "123456789"
assert connection_file_path.resource_type() == "connections"
assert connection_file_path.resource_id() == "3141592"
assert connection_file_path.bucket_name() == "~"
assert connection_file_path.file_path() == "/abc/def"

...additionally, for non-scope paths the scope can be extracted, if present:

from ibm_watson_studio_pipelines import CpdPath

scope_path = CpdPath.from_string("cpd:///projects/123456789")
connection_path = CpdPath.from_string("cpd:///projects/123456789/connections/3141592")
assert connection_path.scope() == scope_path

Contribution

See a separate document on contribution.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ibm-watson-studio-pipelines-0.2.12.tar.gz (30.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ibm-watson-studio-pipelines-0.2.12.tar.gz.

File metadata

  • Download URL: ibm-watson-studio-pipelines-0.2.12.tar.gz
  • Upload date:
  • Size: 30.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.15

File hashes

Hashes for ibm-watson-studio-pipelines-0.2.12.tar.gz
Algorithm Hash digest
SHA256 0d91c9e1b7769e702644f510646796de67757d0a7ea9d68ddbd9da035590ddc1
MD5 05c252187d083643a7b3a40b2fc6be74
BLAKE2b-256 65207ee608a0ec1958bfe4b8fad6da9715980fda3a7383e645ab0dcae86727c0

See more details on using hashes here.

File details

Details for the file ibm_watson_studio_pipelines-0.2.12-py3-none-any.whl.

File metadata

  • Download URL: ibm_watson_studio_pipelines-0.2.12-py3-none-any.whl
  • Upload date:
  • Size: 30.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.9.15

File hashes

Hashes for ibm_watson_studio_pipelines-0.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 52093cc9b73b1f8fd9d8ff9dd981ce91f8a8d844d03b0ec146fa8bdd29771299
MD5 854beca0c00e0d4d5686017deef9ebe4
BLAKE2b-256 a2c48219778eb5650c7c6e2b2f7bf486d621fd83c53f8a99fcdf15fc7e8225f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page