Skip to main content

Convert IBM hexadecimal floating-point to IEEE 754 floating-point

Project description

The ibm2ieee package provides NumPy universal functions (“ufuncs”) for converting IBM single-precision and double-precision hexadecimal floats to the IEEE 754-format floats used by Python and NumPy on almost all current platforms.

Features

  • Fast: 200-400 million values converted per second on a typical modern machine, assuming normal inputs.

  • Correct: converted results are correctly rounded, according to the default IEEE 754 round-ties-to-even rounding mode. Corner cases (overflow, underflow, subnormal results, signed zeros, non-normalised input) are all handled correctly. Where the rounded converted value is out of range for the target type, an appropriately-signed infinity is returned.

  • Handles both single-precision and double-precision input and output formats.

Portability note: the conversion functions provided in this module assume that numpy.float32 and numpy.float64 are based on the standard IEEE 754 binary32 and binary64 floating-point formats. This is true on the overwhelming majority of current platforms, but is not guaranteed by the relevant language standards.

Usage

The package provides two functions:

  • ibm2float32 converts IBM single- or double-precision data to IEEE 754 single-precision values, in numpy.float32 format.

  • ibm2float64 converts IBM single- or double-precision data to IEEE 754 double-precision values, in numpy.float64 format.

For both functions, IBM single-precision input data must be represented using the numpy.uint32 dtype, while IBM double-precision inputs must be represented using numpy.uint64.

Both functions assume that the IBM data have been converted to NumPy integer format in such a way that the most significant bits of the floating-point number become the most significant bits of the integer values. So when decoding byte data representing IBM hexadecimal floating-point numbers, it’s important to take the endianness of the byte data into account. See the Examples section below for an example of converting big-endian byte data.

Examples

>>> import numpy
>>> from ibm2ieee import ibm2float32, ibm2float64
>>> ibm2float32(numpy.uint32(0xc1180000))
-1.5
>>> type(ibm2float32(numpy.uint32(0xc1180000)))
<class 'numpy.float32'>
>>> ibm2float32(numpy.uint64(0x413243f6a8885a31))
3.1415927
>>> ibm2float32(numpy.uint32(0x61100000))
inf
>>> ibm2float64(numpy.uint32(0xc1180000))
-1.5
>>> ibm2float64(numpy.uint64(0x413243f6a8885a31))
3.141592653589793
>>> ibm2float64(numpy.uint32(0x61100000))
3.402823669209385e+38
>>> input_array = numpy.arange(
        0x40fffffe, 0x41000002, dtype=numpy.uint32).reshape(2, 2)
>>> input_array
array([[1090519038, 1090519039],
       [1090519040, 1090519041]], dtype=uint32)
>>> ibm2float64(input_array)
array([[9.99999881e-01, 9.99999940e-01],
       [0.00000000e+00, 9.53674316e-07]])

When converting byte data read from a file, it’s important to know the endianness of that data (which is frequently big-endian in historical data files using IBM hex floating-point). Here’s an example of converting IBM single-precision data stored in big-endian form to numpy.float32. Note the use of the '>u4' dtype when converting the bytestring to a NumPy uint32 array. For little-endian input data, you would use '<u4' instead.

>>> input_data = b'\xc12C\xf7\xc1\x19!\xfb\x00\x00\x00\x00A\x19!\xfbA2C\xf7'
>>> input_as_uint32 = numpy.frombuffer(input_data, dtype='>u4')
>>> input_as_uint32
array([3241296887, 3239649787,          0, 1092166139, 1093813239],
      dtype=uint32)
>>> ibm2float32(input_as_uint32)
array([-3.141593, -1.570796,  0.      ,  1.570796,  3.141593],
      dtype=float32)

Notes on the formats

The IBM single-precision format has a precision of 6 hexadecimal digits, which in practice translates to a precision of 21-24 bits, depending on the binade that the relevant value belongs to. IEEE 754 single-precision has a precision of 24 bits. So all not-too-small, not-too-large IBM single-precision values can be translated to IEEE 754 single-precision values with no loss of precision. However, the IBM single precision range is larger than the corresponding IEEE 754 range, so extreme IBM single-precision values may overflow to infinity, underflow to zero, or be rounded to a subnormal value when converted to IEEE 754 single-precision.

For double-precision conversions, the tradeoff works the other way: the IBM double-precision format has an effective precision of 53-56 bits, while IEEE 754 double-precision has 53-bit precision. So most IBM values will be rounded when converted to IEEE 754. However, the IEEE 754 double-precision range is larger than that of IBM double-precision, so there’s no danger of overflow, underflow, or reduced-precision subnormal results when converting IBM double-precision to IEEE 754 double-precision.

Every IBM single-precision value can be exactly represented in IEEE 754 double-precision, so if you want a lossless representation of IBM single-precision data, use ibm2float64.

Note that the IBM formats do not allow representations of special values like infinities and NaNs. However, signed zeros are representable, and the sign of a zero is preserved under all conversions.

Installation

The latest release of ibm2ieee is available from the Python Package Index, at https://pypi.org/project/ibm2ieee. It can be installed with pip in the usual way:

pip install ibm2ieee

Wheels are provided for common platforms and Python versions. If installing from source, note that ibm2ieee includes a C extension, so you’ll need the appropriate compiler on your system to be able to install.

ibm2ieee requires Python >= 3.7.

License

(C) Copyright 2018-2023 Enthought, Inc., Austin, TX All rights reserved.

This software is provided without warranty under the terms of the BSD license included in LICENSE.txt and may be redistributed only under the conditions described in the aforementioned license. The license is also available online at http://www.enthought.com/licenses/BSD.txt

Thanks for using Enthought open source!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ibm2ieee-1.3.3.tar.gz (17.1 kB view details)

Uploaded Source

Built Distributions

ibm2ieee-1.3.3-cp312-cp312-win_amd64.whl (21.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

ibm2ieee-1.3.3-cp312-cp312-win32.whl (21.1 kB view details)

Uploaded CPython 3.12 Windows x86

ibm2ieee-1.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl (18.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_universal2.whl (22.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

ibm2ieee-1.3.3-cp311-cp311-win_amd64.whl (21.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

ibm2ieee-1.3.3-cp311-cp311-win32.whl (20.9 kB view details)

Uploaded CPython 3.11 Windows x86

ibm2ieee-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (30.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl (18.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_universal2.whl (21.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ibm2ieee-1.3.3-cp310-cp310-win_amd64.whl (21.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

ibm2ieee-1.3.3-cp310-cp310-win32.whl (20.9 kB view details)

Uploaded CPython 3.10 Windows x86

ibm2ieee-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (30.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl (18.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_universal2.whl (21.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

ibm2ieee-1.3.3-cp39-cp39-win_amd64.whl (21.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

ibm2ieee-1.3.3-cp39-cp39-win32.whl (20.9 kB view details)

Uploaded CPython 3.9 Windows x86

ibm2ieee-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (30.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl (18.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_universal2.whl (21.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

ibm2ieee-1.3.3-cp38-cp38-win_amd64.whl (21.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

ibm2ieee-1.3.3-cp38-cp38-win32.whl (20.9 kB view details)

Uploaded CPython 3.8 Windows x86

ibm2ieee-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (31.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl (18.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_universal2.whl (21.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

ibm2ieee-1.3.3-cp37-cp37m-win_amd64.whl (21.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

ibm2ieee-1.3.3-cp37-cp37m-win32.whl (20.9 kB view details)

Uploaded CPython 3.7m Windows x86

ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (30.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

ibm2ieee-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (18.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ibm2ieee-1.3.3.tar.gz.

File metadata

  • Download URL: ibm2ieee-1.3.3.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3.tar.gz
Algorithm Hash digest
SHA256 c913cce4315502badd335738e89632a60e0e4253a01bffa5a6d21d6d9172334f
MD5 2bd40208bbc09b5b689acc06de0de577
BLAKE2b-256 5236a08ca13a725fabcea975dce99de27f435a8dcb1715765b0ca2f29a4ce269

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5f8fdf3b5689f840eee06d502bef129e72383dcef42aba47a14bbe6b8808540c
MD5 4c60348f50a6eaceccc9da57ccc029aa
BLAKE2b-256 5ae3f422836427704cb108d974e30edb18d8e25f9bc3589e382259e53f9926d7

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 03042c6e1b25c8f1e6255544ddc831049df047b8832c5bf1397643de82050021
MD5 206ca919f27169264f0f33b1175c03fa
BLAKE2b-256 d4336d686bf7791662f6aeae96a0153d5f5e2bea8a9b31b56269bf86cc92bda7

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bc40866dcd4f527503ae0e98e52f761ba07cca299f04ca2431262570f42742c
MD5 8675d1adc635b08572b8312af40f71c2
BLAKE2b-256 a51b564bae6b4d8ebebc03d3a9f00429abb8f7bde7fdd9c2270996138d2197b9

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 548bc7558a00ca7435781c3dfbfc23e89f1aaa5d229eb25ce94d525285775dfa
MD5 a1118c9022809be50b3a5cd2183ebe15
BLAKE2b-256 17e8074a800aadf17bbb09a7954c672263c092fe3b41f9d6ddd54e6e202c4017

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26efbebc1dd7395b131f98b6381ebf01c5c802275f457dbc59d8c467eaea291f
MD5 556f7183e0fea7f028c4f9dda4fe0948
BLAKE2b-256 02809984268a888e9afe2a3a1a91f53d9d372c89a768643554d702dd1293bef4

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0f78585170c1ff3c9a0be658b71c0ce1ddf5a005376ee5cacf2184031575a509
MD5 e4f09e110b625d2b251d188ae5c85541
BLAKE2b-256 e423dae6e26bc749b07d3a11f2509006b2d9e2fb4ffdf30eeb9566b416f645fc

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4ac75199641bcdce9a53685b912cd4fb087919db72c90c5cd62a81a4301af251
MD5 fd184400cec5b530410a375cec5c4e11
BLAKE2b-256 df5efcff91cbd3c02c2c49e471f0eb1830e7ec93eacc8d65ae1e7a5b7d0e08d7

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 421d34251718f9438cdb31af8a950e56fb26517de439cd29d99f350fdaa640e0
MD5 32a10074712efa5f30c6ef1370846ac0
BLAKE2b-256 d16e92ced26d1a8423cec1fb853c95b7a0d067d8ba973279bcf87cb7a087d01e

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b5573c1d567475c586e022405f0ff287418db1c1f48b1832db2a69f5f7b7f3d
MD5 14594f52798c8ccac1817048a9e08613
BLAKE2b-256 a03864fdd9f1c7b0946d86e6150b02ef18c36e825af4112d8135f3d36869b6cb

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c5f1e0f2d3e64a2a43a8772a6e71860870cb801649ec1b07e2c6613e4fa8f2f
MD5 b18da93bc57759d16beb4ffe006259d2
BLAKE2b-256 55233d658252a77eb9699cd8a9fa3f2a9ee412dfefdab2358482036de464358a

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 95781479244a4dea91374409b89f4ffa5ce30072addf4f3b740b5e6249ae41bc
MD5 90118195956acf3d1c8770f4e973990a
BLAKE2b-256 2f302c58c2c15c4289858f722df8e2f3c088d16e6f7019343c096867870ab71b

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eec915bc08020c599e195a5b84b248fbe13319bb223708885eeaeb747b3f13dd
MD5 228ab6dab75c4b3ab44f5579342fa4ff
BLAKE2b-256 c163e87fa737627db23b3837ff528ab75abb2d63101894bcc9672ddba47c3dd2

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b26a1ae2d2b53227469e68e735f1b0a4fa9fb21c510b25f55dd8810433230003
MD5 85f1d8c168e66f84238afb6a99ee2913
BLAKE2b-256 2cb166766b47203acbb018eb802543264f3d2f77f78eeddfcfaf8ea24edd30b2

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0fd98b23047f172791268c5aecda4e3b2779ff20c6ce4e81153c44bf03623e52
MD5 6e6336011a0ae13771a0f8f04ff56e4b
BLAKE2b-256 a7b974f8d3b5bbe3a226659d3837d301d3159c9c73009d5f4271303d0b951382

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e4b133f603d4c84b5bfd3c7c39b2312c98b8f1363acd41b2d5094e76d3bbf802
MD5 b932a62d55eace09c3a8f670bcded85e
BLAKE2b-256 13fb4b88903393e8a61069342306f5970c270579bc8e56eddac5145956e23b25

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ece1e48bf8bb93c403b6a159688129b334f47d9efe4f48981a930b6ee038dbd
MD5 1c90b01dafb5173623835c0ec733bb22
BLAKE2b-256 f49d14667232f631d7d34aba96a1ae8f281ccb9ab86e185277396dbad36791b9

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a54cda230408fe6659fef26460b0fbcc48f70c25d590c25335eb5b7cb5e1b189
MD5 68cae1f19f0c7114a8e24b607b7e60f4
BLAKE2b-256 d2be44939be037beb09ce0789fb574c3f8759b71680bc590caa59bb0e54d229d

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09fdfed4490b8f1c7c6310fb6842fb00eaf05f205fb694d919a4f5472b810511
MD5 103e6b770346f23a2819081bdf33465d
BLAKE2b-256 6e63f2c2bedfc9065d6c9539d7d7851e63fcedfbd9f0c838585538a44f583ba4

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55b32b617f32771d406dd9448902734a0c3dc5e8002be0ed88c92629563f9064
MD5 31bea4410d9a5db457ec4a76ee460535
BLAKE2b-256 15d31b589ff2553d9840e143ef5728a204b994009e022f2b9035844567419498

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5340c49aabb04e9e11d34b86d6a988db4dc763d30df54c1ef538ccd2c493b46e
MD5 29a729c7852d362ee3fd21857e5d73a7
BLAKE2b-256 9d39a7927800c673c04259e955d5e7bcac5a4b4dd9092a9cfeba2b9f6deb1ee0

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fbe6351cd79093ed87d4dd85bc147ec16baf01f98fce906310039756efc2fe1a
MD5 e00d8aefef675c9c1d09c486bb456b8e
BLAKE2b-256 dab9be1ec735c02f40128893f79628364ce67b50bff8ceb55d78b3c91df8447f

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 626b505b92702a556cc1e9c63c5b134edaf1bce77a57d9590e04fcd82f159ab3
MD5 08a38ccbc750c7a9bdfcb71ee0e44242
BLAKE2b-256 0abd8d7e441fb265b56ecbf8a2e8e9b61c9b34c090bf4132fbaddb681bb520de

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 add9c9e78276e524c940ea8c1563eb957a342f244d5002f9e84021645c9e9d2a
MD5 b7a7a8b7c831f100d8df0e39f1c3906c
BLAKE2b-256 bcbe89d4185ea6030b8da951823562b0f36676b8816a6d6fdd3c5017dd114400

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1f2de76e134de83000ef2345afc9b26a2c8845e49ef20653ec4f0a72a26986d
MD5 7585a7ce54e734bf4d77758b7c4495c8
BLAKE2b-256 8fcb5990d2104c6c025ee21c9607c407959f8f99096f34db2e9515081370ed19

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bb93dd8d0dfe511263cd3cc5d493049d7f7704461c1aa9a165288766e6e27083
MD5 6cd5d06a84ff232a218604936fa6865d
BLAKE2b-256 0c17ffc55ba829647283ba3a2fdbbf5f4de97314d5ade9b68639e4b9cfa5b4f3

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76a93726dc9f476a61ab52b60ab7b9b6bf57d1642d852fc3f37e292151c14cbe
MD5 b2516c0fe0c72482fee71c4aa1d3b845
BLAKE2b-256 7e24e8b8628b3665252d5fec348dd56ac4a5b77ba2c88d2547a766f3a1b5bb74

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c0ca1e8739e8a1bfe6bf8c5e103eb19fa876cf2f16dce1c88c04d09eaf3ec3a9
MD5 0aea1c6e4ab100e34756461b0e3649de
BLAKE2b-256 aac57a3709f0e43cc74970dd12773f5e0e5f9957c148e54c22a36d76271a4c70

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cdb2bd1c71c63da72fb2b7ca6fc028cec51435778e63a502da03059e38a6b715
MD5 3563428fbe74c47a9603afe645cfde49
BLAKE2b-256 b8b0e35461fcada70b011f4fb2de363e797ed1c2628227b628020c96f7012537

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5e596927c89cbcecd1d79a7192d33ef1d12d7134d5387e28ad0a0db0f9ac60b5
MD5 d3b99d7a0247781dd2138e29ab79e9de
BLAKE2b-256 420cc4de8422de69d62035d8fb7898df8e2ffe57da24de034b94cccbf6c7c43e

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df571dd3b6623bfc9ad66ccaf0771227bd5c6da705611be702a18b0ef84a4a30
MD5 07f88cda801e32e6e2ce83008735a786
BLAKE2b-256 63ea073fc6f041ec954f26e5f7f61d43f2527bdfadb59f8c98e4afb1579a1c58

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a5642ca75d421a368d37bda7c24f706bb38103de52837b8e8dd3e935ef62061
MD5 e16da1cda02400585c9f4da974041467
BLAKE2b-256 06c8ba24f1533c0f3aa83d21a68d5ab3a3fd96c18f7f76ad0e805adff0b6e7bd

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 604ca1748b76d71f543e896cf0583d00495d39b15b53092c4e43fea5d146d450
MD5 0e9c58d9bca0731ceb5d01a02afdb847
BLAKE2b-256 0128dcdbbf4f512eba3bb3a8e7e52310464bd49660a515e737ae192a3ac95592

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4851503b186edf461e7fdcf04ccbafae2fab2f9a6c9fdad6a4188ab0c8d2a044
MD5 e1e9877ef40b16bffc70d3a10364de35
BLAKE2b-256 01406c54fb90f9168d6e5e185e0a36dd34b859f927a834f641a31f1375e65406

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 48c49dbc50fcb16936f65b93edbbc0c484c6342ff5458eb4b63adf8d7cb1bd95
MD5 9f1d5eb2ef41fbed4c048ba018872a1a
BLAKE2b-256 cd727d22ce91464dfc44f3b27bf81cde5f3ebcb1c6bd89ba575bccbb9669c6b5

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f545f2da5992c637730bc5e84c3913f04aae716abe7dbd8e5b1ef5ca64febac8
MD5 155993ff7418beb346f42eec3f8a68f1
BLAKE2b-256 6359427b39252cf45325490f07e46e76cbe249ca974a2f0ae8b1113227cf3616

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ibm2ieee-1.3.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 20.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1404305922aabe8df170a0e647182ab674703b326a99c8624d9b498efbd058fb
MD5 d1c757ce042291b7c53f6843f314bc61
BLAKE2b-256 d9f2d74243f48c621d9f6eddcf14cc46798530da21385fa488268418344b693a

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc60e3cf7a660377daa859721486b3f9978bb95ca1841729c22f61d253dda114
MD5 44efc1381b474c9aa797d6cfc1634812
BLAKE2b-256 1d48ee5dc6579c8768aab43d810d8394310a573e41cb76896e4c04aabf53b0f2

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39a19fe19957ab4e0a886927dd047b678f708a826ac7fe9ac9a532985d6977fc
MD5 e0a0ab267ca7494d640670669e65efda
BLAKE2b-256 fd52a86d8c6ef78601fe7929c3e717acc403d859afab8afc1b1249aac722a44c

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 159d62014032d1dca56dc53f32eb926f0e591aa44c602f4c9e68ff60347b43b2
MD5 73d942f66452ca8151e881e7a5f6e86c
BLAKE2b-256 85753ea867afd5db6043e7aecb549939c646d1423cfd7bbf7a26b318ac71641d

See more details on using hashes here.

File details

Details for the file ibm2ieee-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ibm2ieee-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09435bf063ccca4fa30aa79dbf340529e37ba931e76274cd98f73ce9615821d4
MD5 7ff30cdc0686d3c4d6e094b075cf02b5
BLAKE2b-256 0211ec263ed82d22d330dacc92013f45e4bb1fad963d4dc9c8500317e8e955f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page