Skip to main content

Ionospheric Bubble Probability

Project description

The ionospheric bubble probability statistical model is a Swarm L2 product, named IBP_CLI. The output of the Ionospheric Bubble Probability (IBP) product is an index, that depends on the day of year or the month of the year, geographic longitude, local time and solar flux index.

The output floating point index ranges 0-1 and characterizes the percentage probability of low latitude bubble occurence at the specified time, location and solar flux.

This empirical IBP model has been derived from magnetic observations obtained by the CHAMP and Swarm missions. The model is representative for the altitude range 350 - 500 km and low geographic latitudes of +/- 45 degree.

Documentation

Detailed documentation can be found at: https://ibp-model.readthedocs.io

Quick Start

Installation

Using pip:

$ pip install ibpmodel

Dependencies:

  • numpy

  • pandas

  • matplotlib

  • scipy

  • cdflib

Usage

The return value of the function ibpmodel.calculateIBPindex() is of type pandas.DataFrame.

>>> import ibpmodel as ibp
>>> ibp.calculateIBPindex(day_month=15,           # Day of Year or Month
              longitude=0,                        # Longitude in degree
              local_time=20.9,                    # Local time in hours
              f107=150)                           # F10.7 cm Solar Flux index
   Doy  Month  Lon    LT  F10.7     IBP
0   15      1    0  20.9    150  0.3433
 >>> ibp.calculateIBPindex(day_month=['Jan','Feb','Mar'], local_time=22)
      Doy  Month  Lon  LT  F10.7     IBP
 0     15      1 -180  22    150  0.0655
 1     15      1 -175  22    150  0.0667
 2     15      1 -170  22    150  0.0685
 3     15      1 -165  22    150  0.0710
 4     15      1 -160  22    150  0.0754
 ..   ...    ...  ...  ..    ...     ...
 211   74      3  155  22    150  0.2146
 212   74      3  160  22    150  0.2123
 213   74      3  165  22    150  0.2117
 214   74      3  170  22    150  0.2119
 215   74      3  175  22    150  0.2123

[216 rows x 6 columns]
>>> ibp.plotIBPindex(doy=349)
>>>
Contour plot of the IBP index for the given day

The IBP model reproduces the high occurrence probability of EPDs ranging between 50-90% over the South American (75-25°W) sector and low occurrence probability over the Pacific sector during the period around December solstice.

>>> ibp.plotButterflyData(f107=150)
>>>
Contour plot of result from function ButterflyData()

The monthly global occurrence rate of EPDs from the IBP model, is derived for a fixed value of F10.7=150 s.f.u for all integer longitudes at a resolution of 5° at the middle of each month and averaged between 19 and 1 LT. The seasonal and longitudinal variations of the EPD occurrence rates are particularly well-characterized by the IBP model as compared to its climatology with highest rates seen around the equinoxes and winter solstice in the America-Atlantic-Africa region and lowest rates during November-February in the Pacific sector and during May-July in the America-Atlantic and Indian sectors.

References

Stolle, C., Siddiqui, T. A., Schreiter, L., Das, S. K., Rusch, I., Rother, M., & Doornbos, E. (2024). An empirical model of the occurrence rate of low latitude post‐sunset plasma irregularities derived from CHAMP and Swarm magnetic observations. Space Weather, 22, e2023SW003809. https://doi.org/10.1029/2023SW003809

Lucas Schreiter, Anwendungsorientierte Modellierung der Auftretenswahrscheinlichkeit und relativen Häufigkeit von äquatorialen Plasmabubbles, Master’s thesis, Institute of Mathematics, University of Potsdam, 2016. (in German only.)

Information for developers

Setup environment

$ git clone https://igit.iap-kborn.de/ibp/ibp-model.git
$ cd ibp-model
$ pip install -r requirements-dev.txt
$ pip install -e .

Test of package using doctest

$ python src/ibpmodel/ibpcalc.py

No error should occur.

Test run of the documentation

$ cd docs
$ make clean && make html

The docs/build/html/ directory contains the html files. Open index.html in browser. The results of the code examples on the usage page are generated automatically. Therefore the ibpmodel package must be installed (pip install -e .).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ibpmodel-1.3.0.tar.gz (4.7 MB view details)

Uploaded Source

Built Distribution

ibpmodel-1.3.0-py3-none-any.whl (205.9 kB view details)

Uploaded Python 3

File details

Details for the file ibpmodel-1.3.0.tar.gz.

File metadata

  • Download URL: ibpmodel-1.3.0.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for ibpmodel-1.3.0.tar.gz
Algorithm Hash digest
SHA256 783f879bd1b94ac0f96222886bc15e56824d2c64d062537b3e5ae937a137f825
MD5 49b777345d7d5b190cdd8c9b971a4a53
BLAKE2b-256 a60488e492cfe1ed695bfb51687dd1f083a286dffaa1d89c8f7830f8d26a2acd

See more details on using hashes here.

File details

Details for the file ibpmodel-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: ibpmodel-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 205.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for ibpmodel-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 06123add78e81e5cf8a01c57e11ea6b0a735636eebdebe2a63bd70c6c9b07108
MD5 537e0cc9141fe7bf6faf5d24d40e8e3a
BLAKE2b-256 37a5d5d7f67e56446cbf2e0e7cc98aae7a89b172862900ce5b98ac3ca7af79e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page