Skip to main content

Ionospheric Bubble Probability

Project description

The ionospheric bubble probability statistical model is a Swarm L2 product, named IBP_CLI. The output of the Ionospheric Bubble Probability (IBP) product is an index, that depends on the day of year or the month of the year, geographic longitude, local time and solar flux index.

The output floating point index ranges 0-1 and characterizes the percentage probability of low latitude bubble occurence at the specified time, location and solar flux.

This empirical IBP model has been derived from magnetic observations obtained by the CHAMP and Swarm missions. The model is representative for the altitude range 350 - 500 km and low geographic latitudes of +/- 45 degree.

Documentation

Detailed documentation can be found at: https://ibp-model.readthedocs.io

Quick Start

Installation

Using pip:

$ pip install ibpmodel

Dependencies:

  • numpy

  • pandas

  • matplotlib

  • scipy

  • cdflib

Usage

The return value of the function ibpmodel.calculateIBPindex() is of type pandas.DataFrame.

>>> from ibpmodel import *
>>> calculateIBPindex(day_month=15,    # Day of Year or Month
              longitude=0,                        # Longitude in degree
              local_time=20.9,                    # Local time in hours
              f107=150)                           # F10.7 cm Solar Flux index
   Doy  Month  Lon    LT  F10.7     IBP
0   15      1    0  20.9    150  0.3547
 >>> calculateIBPindex(day_month=['Jan','Feb','Mar'], local_time=22)
      Doy  Month  Lon  LT  F10.7     IBP
 0     15      1 -180  22    150  0.0739
 1     15      1 -175  22    150  0.0722
 2     15      1 -170  22    150  0.0717
 3     15      1 -165  22    150  0.0728
 4     15      1 -160  22    150  0.0771
 ..   ...    ...  ...  ..    ...     ...
 211   74      3  155  22    150  0.2061
 212   74      3  160  22    150  0.2025
 213   74      3  165  22    150  0.1994
 214   74      3  170  22    150  0.1967
 215   74      3  175  22    150  0.1943

[216 rows x 6 columns]
>>> plotIBPindex(doy=349)
>>>
Contour plot of the IBP index for the given day
>>> plotButterflyData(f107=150)
>>>
Contour plot of result from function ButterflyData()

References

Stolle et al., An empirical climatological model of the occurrence of F region equatorial plasma irregularities, 8th Swarm data quality workshop at ESA/ESRIN, October 2017.

Lucas Schreiter, Anwendungsorientierte Modellierung der Auftretenswahrscheinlichkeit und relativen Häufigkeit von äquatorialen Plasmabubbles, Master’s thesis, Institute of Mathematics, University of Potsdam, 2016. (in German only.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ibpmodel-1.1.2.tar.gz (4.0 MB view hashes)

Uploaded Source

Built Distribution

ibpmodel-1.1.2-py3-none-any.whl (176.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page