Skip to main content

Explain why metrics change by unpacking them

Project description

icanexplain

tests code_quality documentation pypi license

Explain why metrics change by unpacking them

This library is here to help with the difficult task of explaining why a metric changes. It's particularly useful for analysts, data scientists, analytics engineers, and business intelligence professionals who need to understand the drivers of a metric's change.

This README provides a small introduction. For more information, please refer to the documentation.

Check out this blog post for some in-depth explanation.

Quickstart

Let's say you're an analyst at an Airbnb-like company. You're tasked with analyzing year-over-year revenue growth. You have obtained the following dataset:

>>> import pandas as pd
>>> fmt_currency = lambda x: '' if pd.isna(x) else '${:,.0f}'.format(x)

>>> revenue = pd.DataFrame.from_dict([
...     {'year': 2019, 'bookings': 1_000, 'revenue_per_booking': 200},
...     {'year': 2020, 'bookings': 1_000, 'revenue_per_booking': 220},
...     {'year': 2021, 'bookings': 1_500, 'revenue_per_booking': 220},
...     {'year': 2022, 'bookings': 1_700, 'revenue_per_booking': 225},
... ])
>>> (
...     revenue
...     .assign(bookings=revenue.bookings.apply('{:,d}'.format))
...     .assign(revenue_per_booking=revenue.revenue_per_booking.apply(fmt_currency))
...     .set_index('year')
... )
     bookings revenue_per_booking
year
2019    1,000                $200
2020    1,000                $220
2021    1,500                $220
2022    1,700                $225

It's quite straightforward to calculate the revenue for each year, and then to measure the year-over-year growth:

>>> (
...     revenue
...     .assign(revenue=revenue.eval('bookings * revenue_per_booking'))
...     .assign(growth=lambda x: x.revenue.diff())
...     .assign(bookings=revenue.bookings.apply('{:,d}'.format))
...     .assign(revenue_per_booking=revenue.revenue_per_booking.apply(fmt_currency))
...     .assign(revenue=lambda x: x.revenue.apply(fmt_currency))
...     .assign(growth=lambda x: x.growth.apply(fmt_currency))
...     .set_index('year')
... )
     bookings revenue_per_booking   revenue    growth
year
2019    1,000                $200  $200,000
2020    1,000                $220  $220,000   $20,000
2021    1,500                $220  $330,000  $110,000
2022    1,700                $225  $382,500   $52,500

Growth can be due to two factors: an increase in the number of bookings, or an increase in the revenue per booking. The icanexplain library to decompose the growth into these two factors. First, let's install the package:

pip install icanexplain

Then, we can use the SumExplainer to decompose the growth:

>>> import icanexplain as ice
>>> explainer = ice.SumExplainer(
...     fact='revenue_per_booking',
...     period='year',
...     count='bookings'
... )
>>> explanation = explainer(revenue)
>>> explanation.map(fmt_currency)
        inner       mix
year
2020  $20,000        $0
2021       $0  $110,000
2022   $7,500   $45,000

Here's how to interpret this explanation:

  • From 2019 to 2020, the revenue growth was entirely due to an increase in the revenue per booking. The number of bookings was exactly the same. Therefore, the $20,000 is entirely due to the inner effect (increase in revenue per booking).
  • From 2020 to 2021, the revenue growth was entirely due to an increase in the number of bookings. The revenue per booking was exactly the same. Therefore, the $110,000 is entirely due to the mix effect (increase in bookings).
  • From 2021 to 2022, there was a 52,500revenuegrowth.However,therevenueperbookingwentdownby10, so the increase is due to the higher number of bookings. The inner effect is -7,500whilethemixeffectis45,000.

Here's a visual representation of this last interpretation:

example

Contributing

Feel free to reach out to max@carbonfact.com if you want to know more and/or contribute 🤗

Check out the contribution guidelines to get started.

License

icanexplain is free and open-source software licensed under the Apache License, Version 2.0.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page