From CV detection to answer questions
Project description
1. 安装
(1). 方法1:使用pip安装
pip install icare-nlp
Pypi链接: https://pypi.org/project/icare-nlp/
(2). 方法2: 使用Source Codes安装
git clone https://github.com/YiyiyiZhao/icare_nlp_tools.git
cd icare_nlp_tools
pip install -e .
pip install -r requirements.txt
2. 使用
2.0 Task_Disp: 输入User query, 输出对应下列四种的Task类型
(1). Commands
from icare_nlp.task_disp import TaskDisp
task_disp=TaskDisp()
task_disp.disp_start()
#Intent classification
task_disp=TaskDisp()
user_query="可以確認下有冇糖不甩?"
task_disp.intent_classify(user_query)
#SYSTEM: 我會幫你完成呢個收據問答嘅任務。
(2). Demo
Object Description and QA Receipt Description and QA
2.1 Object_Desc: 输入object detection list, 输出场景播报
import json
from icare_nlp.object_desc import ObjectDesc
obj_desc=ObjectDesc()
with open("./obj_detect_files/59.json", "r") as f:
obj_detect=json.load(f)
print(obj_detect)
#[{'position': [1149, 580, 258, 270], 'text': 'chair'}, {'position': [958, 186, 235, 171], 'text': 'tv'}, {'position': [1130, 399, 211, 132], 'text': 'chair'}, {'position': [198, 388, 153, 52], 'text': 'chair'}, {'position': [664, 609, 259, 211], 'text': 'chair'}, {'position': [869, 384, 123, 164], 'text': 'chair'}, {'position': [162, 508, 94, 163], 'text': 'bottle'}, {'position': [785, 309, 56, 36], 'text': 'chair'}, {'position': [620, 341, 152, 177], 'text': 'suitcase'}, {'position': [577, 608, 436, 210], 'text': 'chair'}, {'position': [357, 336, 83, 72], 'text': 'chair'}, {'position': [417, 508, 830, 404], 'text': 'dining table'}, {'position': [862, 545, 121, 178], 'text': 'handbag'}, {'position': [862, 545, 122, 177], 'text': 'backpack'}, {'position': [791, 389, 91, 184], 'text': 'chair'}]
obj_desc_res=obj_desc.form_response(obj_detect)
print(obj_desc_res)
#而家眼前嘅景象有9把椅, 1台電視, 1瓶樽, 1個行李箱, 1張飯枱, 1個手袋, 1個書包.視線左上角嘅場景入面有1個行李箱.視線左上角嘅場景入面有1把椅.視線右上角嘅場景入面有1台電視.視線右上角嘅場景入面有1把椅.視線左下角嘅場景入面有2把椅.視線左下角嘅場景入面有1瓶樽.視線左下角嘅場景入面有1張飯枱.視線右下角嘅場景入面有5把椅.視線右下角嘅場景入面有1個手袋.視線右下角嘅場景入面有1個書包.
2.2 Object_QA: 输入object detection list 和 Question, 输出场景有关的Answer
import json
from icare_nlp.object_qa import ObjectQA
obj_qa=ObjectQA()
with open("./obj_detect_files/24.json", "r") as f:
obj_detect=json.load(f)
print(obj_detect)
#[{'position': [999, 349, 213, 254], 'text': 'chair'}, {'position': [221, 64, 427, 125], 'text': 'tv'}, {'position': [72, 325, 144, 58], 'text': 'chair'}, {'position': [873, 221, 78, 49], 'text': 'chair'}, {'position': [101, 535, 177, 267], 'text': 'cup'}, {'position': [1013, 589, 211, 253], 'text': 'handbag'}, {'position': [663, 289, 242, 324], 'text': 'suitcase'}, {'position': [1231, 535, 96, 303], 'text': 'chair'}]
question="我點樣可以攞到椅子?"
obj_desc_res=obj_qa.form_response(question,obj_detect)
print(obj_desc_res)
#chair喺中心點嘅右上方. 椅子有一個堅硬嘅框架,通常由木頭或金屬製成,座位和背部軟。
question="手袋喺我手嘅邊個方向?"
obj_desc_res=obj_qa.form_response(question,obj_detect)
print(obj_desc_res)
#handbag喺中心點嘅右上方. 手袋嘅大小各異,由軟皮革至硬合成材料製成。
question="椅子附近有冇其他物體?"
obj_desc_res=obj_qa.form_response(question,obj_detect)
print(obj_desc_res)
#chair最近嘅物件系 chair,handbag,chair.chair喺chair嘅左上方.handbag喺chair嘅右下方.chair喺chair嘅右下方.. 椅子有一個堅硬嘅框架,通常由木頭或金屬製成,座位和背部軟。
2.3 Receipt_Desc: 输入Receipt的OCR识别文本, 输出Receipt描述
import json
from icare_nlp.receipt_desc import ReceiptDesc
receipt_desc=ReceiptDesc()
with open("./ocr_detect_files/ocr_azure.json", "r") as f:
ocr_data = json.load(f)
ocr_text = ""
for item in ocr_data:
ocr_text += item["text"] + '\n'
rec_desc_res=receipt_desc.form_response(ocr_text)
print(rec_desc_res)
#呢张收据主要嘅信息包括外賣, 點餐時間, 收據號碼, 新加坡海南雞, 點餐號碼, 優惠碼, 当久於, 腸仔猪扒雞扒飯, 秘製燒汁, 白飯, 少鹽, 概沟, 小計, 折扣, 總金額, 付款資料, 付款方式, 扣除金額, 餘額, 卡號, 機號, 發票號碼, 交易時間, 绿联, 深圳市绿联科技股份有限公司, 地址深圳市龙华区龙观西路龙城工业区绿联办公大楼, 电话, 官网, 执行标准
2.4 Receipt_QA: 输入Receipt的OCR识别文本, 输出票据总价
#!/bin/bash
export OPEN_API_KEY="your_api_key_here"
import json
from icare_nlp.receipt_qa import ReceiptQA
receipt_qa=ReceiptQA()
with open("./ocr_detect_files/ocr_azure.json", "r") as f:
ocr_data = json.load(f)
ocr_text = ""
for item in ocr_data:
ocr_text += item["text"] + '\n'
rec_desc_res=receipt_qa.form_response(ocr_text)
print(rec_desc_res)
#總花費係: 51.0.
3. Structure and Other Information
The core structure is:
├── __init__.py
├── object_desc.py
├── object_qa.py
├── receipt_desc.py
├── receipt_qa.py
├── resources
├── task_disp.py
└── utils.py
There are some files for you to have a try: If you want to try the object description and question answering functions:
./examples/obj_detect_files
If you want to try the receipt description and question answering functions:
./examples/ocr_detect_files
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
icare_nlp-0.0.6.tar.gz
(92.2 MB
view details)
Built Distribution
icare_nlp-0.0.6-py3-none-any.whl
(259.1 kB
view details)
File details
Details for the file icare_nlp-0.0.6.tar.gz
.
File metadata
- Download URL: icare_nlp-0.0.6.tar.gz
- Upload date:
- Size: 92.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10ed85a77d0313fb74c55ecb4fbec931ac3b2367af98ac2a77d1c442e7b9d8de |
|
MD5 | f81130633ff8601ddcaaf88b71dff0ad |
|
BLAKE2b-256 | a83fa0f4df8358ac8ac58e744adb5e6f8271c54ccae580c4d535cacaf60582cd |
File details
Details for the file icare_nlp-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: icare_nlp-0.0.6-py3-none-any.whl
- Upload date:
- Size: 259.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11b35640a68d019c55c57f664209152a570b9bcff550e76bfee9e97b485efdc4 |
|
MD5 | 5b4ced1f792bdc56d150210967e00860 |
|
BLAKE2b-256 | 09c7af9acb82a0392b90955a0b96998a8113e4e717af6b91c5ac43658b9e51fc |