Skip to main content

A machine learning tool for fusion simulation validation.

Project description

Icarus

Machine learning for fusion simulation validation. Named after the Icarus of greek mythology - because to reach for the stars, you risk a little sunburn.

The purpose of this package is to provide a set of machine learning tools that engineers can use to assess the agreement between an experiment and simulation; that is, to validate the simulation with experimental data. When the experiment does not agree with the simulation the tools should provide the engineer with a probable reason for the mismatch to allow further investigation and diagnosis.

Installation

Standard Installation (PyPI)

You can install icarus from PyPi as follows:

pip install icarus

Developer Installation

Clone icarus to your local system and cd to the root directory of icarus. Ensure that your virtual environment is activated and run from the icarus root directory:

pip install -e .

PyTorch

Icarus requires the latest stable version of PyTorch. The installation process varies depending on your hardware and operating system. Please follow the appropriate instructions below:

CPU Installation:

If you do not have access to NVIDIA GPUs, install the CPU version of PyTorch. Use the following commands based on your operating system:

  • Windows/macOS:
pip3 install torch
  • Linux:
pip3 install torch --index-url https://download.pytorch.org/whl/cpu

GPU Installation (NVIDIA CUDA):

If you have access to NVIDIA GPUs and want to leverage CUDA for faster computation, use these commands (note: CUDA is not available on MacOS):

  • Linux:
pip3 install torch
  • Windows:
pip3 install torch --index-url https://download.pytorch.org/whl/cu121

Note: The CUDA version (cu121 in this example) may change. Always check the official PyTorch website for the most up-to-date installation instructions and CUDA version compatibility.

Verifying Installation:

After installation, you can verify that PyTorch is installed correctly by running:

import torch

print(torch.__version__)
print(torch.cuda.is_available())  # returns True if CUDA available and properly installed

Getting Started

The examples folder includes a sequence of examples using icarus : to generate the dataset and train an ml model from the suite available on the generated data.

Contributors

  • Arjav Poudel, UK Atomic Energy Authority, (arjavp-ukaea)
  • Baris Cavusoglu, UK Atomic Energy Authority, (barisc-ukaea)
  • Luke Humphrey, UK Atomic Energy Authority, (lukethehuman)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

icarus_fusion-0.1.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

icarus_fusion-0.1.1-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file icarus_fusion-0.1.1.tar.gz.

File metadata

  • Download URL: icarus_fusion-0.1.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for icarus_fusion-0.1.1.tar.gz
Algorithm Hash digest
SHA256 4351f1629405527ce6dc0cfc5474245fe553bc5905ab8735c2dd096a248fe917
MD5 84b39e4e0ae83b379a9028ac63ee84ca
BLAKE2b-256 b99c805d397ac12c84cab6f5f2b5782288f35d4997a371a463a830e067f8c58e

See more details on using hashes here.

File details

Details for the file icarus_fusion-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for icarus_fusion-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 78b5e73e66b1ce570457b2fb0744c61db061509e35d9270f5c242a076e24753e
MD5 ee37176acacad093712be48a1bed280e
BLAKE2b-256 03bfb903d68a36fcf33d7f5c8c04d1658207aa9091db92a077795ce8038e6def

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page