Skip to main content

Interactive Corpus Analysis Tool

Project description

ICAT logo

Interactive Corpus Analysis Tool

Code style: black PyPI version tests License

The Interactive Corpus Analysis Tool (ICAT) is an interactive machine learning (IML) dashboard for unlabeled text datasets that allows a user to iteratively and visually define features, explore and label instances of their dataset, and train a logistic regression model on the fly as they do so to assist in filtering, searching, and labeling tasks.

ICAT Screenshot

ICAT is implemented using holoviz's panel library, so it can either directly be rendered like a widget in a jupyter lab/notebook instance, or incorporated as part of a standalone panel website.

Installation

ICAT can be installed via pip with:

pip install icat-iml

Visualization

The primary ring visualization is called AnchorViz, a technique from IML literature. (See Chen, Nan-Chen, et al. "AnchorViz: Facilitating classifier error discovery through interactive semantic data exploration")

We implemented an ipywidget version of AnchorViz and use it in this project, it can be found separately at https://github.com/ORNL/ipyanchorviz

Citation

To cite usage of ICAT, please use the following bibtex:

@misc{doecode_105653,
    title = {Interactive Corpus Analysis Tool},
    author = {Martindale, Nathan and Stewart, Scott},
    abstractNote = {The Interactive Corpus Analysis Tool (ICAT) is an interactive machine learning dashboard for unlabeled text/natural language processing datasets that allows a user to iteratively and visually define features, explore and label instances of their dataset, and simultaneously train a logistic regression model. ICAT was created to allow subject matter experts in a specific domain to directly train their own models for unlabeled datasets visually, without needing to be a machine learning expert or needing to know how to code the models themselves. This approach allows users to directly leverage the power of machine learning, but critically, also involves the user in the development of the machine learning model.},
    year = {2023},
    month = {apr}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

icat-iml-0.7.1.tar.gz (57.0 kB view hashes)

Uploaded Source

Built Distribution

icat_iml-0.7.1-py3-none-any.whl (49.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page