Skip to main content

A high-level Deep Learning framework that extends PyTorch and PyCUDA.

Project description

ice-learn

ice is a sweet extension of PyTorch, a modular high-level deep learning framework that extends and integrates PyTorch and PyCUDA with intuitive interfaces. We aims not only to minimize the boilerplate code without loss of functionality, but also maximize the flexibility and usability for extending and composing any deep learning tasks into an integrate multi-task learning program.

NOTE: It is currently in pre-alpha versions, and the API is subject to change.

Features

  • Minimize Boilerplates: You don't need to repeat yourself.

    • Config Once, Use Everywhere: Every mutable class can be converted into a configurable. Configuration for deep learning project has never been this easy before. A tagging system to manage and reuse any type of resources you need.
    • Inplace Argument Parser: You can parse command line argument instantly without a long page of previous definition.
  • Maximize Flexiblility: Painless and Incremental Extension from CUDA to non-standard data-preprocessing and training schedules for multi-task learning.

    • The kernel data structure of ice is a Hypergraph that manages different module nodes (e.g. ice.DatasetNode, ice.ModuleNode, etc.) that are switchable between multiple user-defined execution modes. Extending a new dataset, network module or loss function is by adding new nn.Datasets, nn.Modules and python callables to specific mode of the entire graph.
    • We provide PyCUDA support by automatically managing the PyCUDA context as well as providing a simplified torch.Tensor class wrapper that supports efficient multi-dimensional element access in CUDA codes. This feature manages to make writing, compile, execution and testing CUDA extensions for PyTorch extremely fast. We also provide a VSCode extension for PyCUDA docstring highlight.
    • We support Multi-Task Learning training by finding the Pareto Optimal for each task weight so that you do not need to tune them manually. (TODO)
    • We support dill-backended Elastic Multiprocessing launch and management that is compitable with Lambda Function and Closures. You can not only build multi-gpu or multi-machine Data Distributed Parallel training program without effort, but also doesn't require to concern about pickability of any part of program in your application. We actually suggest heavy use of lambda functions such as for simple input and output transforms of modules. This feature also contributes to the minimal boilerplates aim of ice.

Install

pip install ice-learn (Recommended)

or pip install .[dev] after a git-clone for developers.

Documentation

You can access documentation through Online Documentation Site, or the docs subdirectory directly. The documentation is partial auto-generated from comment, and partial manually written, the note on how we produce the documenation can be found here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ice-learn-0.4.5.tar.gz (89.2 kB view details)

Uploaded Source

Built Distribution

ice_learn-0.4.5-py3-none-any.whl (108.6 kB view details)

Uploaded Python 3

File details

Details for the file ice-learn-0.4.5.tar.gz.

File metadata

  • Download URL: ice-learn-0.4.5.tar.gz
  • Upload date:
  • Size: 89.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for ice-learn-0.4.5.tar.gz
Algorithm Hash digest
SHA256 f87be4c74f0cad13db7e90d05cae937f154a89ee59b5e7a2f23146a3e35cb253
MD5 12e687007117c69c05bbf43cd470ab2f
BLAKE2b-256 f5164bdb81cc2a006ac7cf4109bc80b3519d9b2bffa0e21b0ad9a9cb4d98f512

See more details on using hashes here.

File details

Details for the file ice_learn-0.4.5-py3-none-any.whl.

File metadata

  • Download URL: ice_learn-0.4.5-py3-none-any.whl
  • Upload date:
  • Size: 108.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for ice_learn-0.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e9c44104ac8519a55948dc425c2cde162771d9d7e8ec0e8a63b7d47ea53bea19
MD5 fe3c61a6b9daf5921902c43d2a8c48e5
BLAKE2b-256 00db1f18f1f01126c14c82c87a02780ad8464c99006954bb0a44a4e3569d8cb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page