Skip to main content

A high-level Deep Learning framework that extends PyTorch and PyCUDA.

Project description

ice-learn

ice is a sweet extension of PyTorch, a modular high-level deep learning framework that extends and integrates PyTorch and PyCUDA with intuitive interfaces. We aims not only to minimize the boilerplate code without loss of functionality, but also maximize the flexibility and usability for extending and composing any deep learning tasks into an integrate multi-task learning program.

NOTE: It is currently in pre-alpha versions, and the API is subject to change.

Features

  • Minimize Boilerplates: You don't need to repeat yourself.

    • Config Once, Use Everywhere: Every mutable class can be converted into a configurable. Configuration for deep learning project has never been this easy before. A tagging system to manage and reuse any type of resources you need.
    • Inplace Argument Parser: You can parse command line argument instantly without a long page of previous definition.
  • Maximize Flexiblility: Painless and Incremental Extension from CUDA to non-standard data-preprocessing and training schedules for multi-task learning.

    • The kernel data structure of ice is a Hypergraph that manages different module nodes (e.g. ice.DatasetNode, ice.ModuleNode, etc.) that are switchable between multiple user-defined execution modes. Extending a new dataset, network module or loss function is by adding new nn.Datasets, nn.Modules and python callables to specific mode of the entire graph.
    • We provide PyCUDA support by automatically managing the PyCUDA context as well as providing a simplified torch.Tensor class wrapper that supports efficient multi-dimensional element access in CUDA codes. This feature manages to make writing, compile, execution and testing CUDA extensions for PyTorch extremely fast. We also provide a VSCode extension for PyCUDA docstring highlight.
    • We support Multi-Task Learning training by finding the Pareto Optimal for each task weight so that you do not need to tune them manually. (TODO)
    • We support dill-backended Elastic Multiprocessing launch and management that is compitable with Lambda Function and Closures. You can not only build multi-gpu or multi-machine Data Distributed Parallel training program without effort, but also doesn't require to concern about pickability of any part of program in your application. We actually suggest heavy use of lambda functions such as for simple input and output transforms of modules. This feature also contributes to the minimal boilerplates aim of ice.

Install

pip install ice-learn (Recommended)

or pip install .[dev] after a git-clone for developers.

Documentation

You can access documentation through Online Documentation Site, or the docs subdirectory directly. The documentation is partial auto-generated from comment, and partial manually written, the note on how we produce the documenation can be found here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ice-learn-0.4.6.tar.gz (89.7 kB view details)

Uploaded Source

Built Distribution

ice_learn-0.4.6-py3-none-any.whl (109.1 kB view details)

Uploaded Python 3

File details

Details for the file ice-learn-0.4.6.tar.gz.

File metadata

  • Download URL: ice-learn-0.4.6.tar.gz
  • Upload date:
  • Size: 89.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for ice-learn-0.4.6.tar.gz
Algorithm Hash digest
SHA256 84021e0c7838574e7976723f38e2910002375836b142449db6dfc8c33544adf0
MD5 02a0f1a61e8dd11e3bb5aa80b6c217a0
BLAKE2b-256 d7fcd922fdaeb5963c2bab2bac680e92653dc689fa321cff0d92db213a3d89b4

See more details on using hashes here.

File details

Details for the file ice_learn-0.4.6-py3-none-any.whl.

File metadata

  • Download URL: ice_learn-0.4.6-py3-none-any.whl
  • Upload date:
  • Size: 109.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for ice_learn-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 fb3ee4890f38f095b8eadf7326a1954bb97be6cca768be01734b4b6a10a8825f
MD5 fc0740cf436e0e7597a2b7f0896b2365
BLAKE2b-256 643d7d546a9f2c94068af0a6fc6f92c21a733bb41e3ac47b98c22cbc3ac75ddb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page