A unified tokenization tool for Images, Chinese and English.
Project description
ICE Tokenizer
- Token id
[0, 20000)
are image tokens. - Token id
[20000, 20100)
are common tokens, mainly punctuations. E.g.,icetk[20000] == '<unk>'
,icetk[20003] == '<pad>'
,icetk[20006] == ','
. - Token id
[20100, 83823)
are English tokens. - Token id
[83823, 145653)
are Chinese tokens. - Token id
[145653, 150000)
are rare tokens. E.g.,icetk[145803] == 'α'
.
You can install the package via
pip install icetk
Tokenization
from icetk import icetk
tokens = icetk.tokenize('Hello World! I am icetk.')
# tokens == ['▁Hello', '▁World', '!', '▁I', '▁am', '▁ice', 'tk', '.']
ids = icetk.encode('Hello World! I am icetk.')
# ids == [39316, 20932, 20035, 20115, 20344, 22881, 35955, 20007]
en = icetk.decode(ids)
# en == 'Hello World! I am icetk.' # always perfectly recover (if without <unk>)
ids = icetk.encode('你好世界!这里是 icetk。')
# ids == [20005, 94874, 84097, 20035, 94947, 22881, 35955, 83823]
ids = icetk.encode(image_path='test.jpeg', image_size=256, compress_rate=8)
# ids == tensor([[12738, 12430, 10398, ..., 7236, 12844, 12386]], device='cuda:0')
# ids.shape == torch.Size([1, 1024])
img = icetk.decode(image_ids=ids, compress_rate=8)
# img.shape == torch.Size([1, 3, 256, 256])
from torchvision.utils import save_image
save_image(img, 'recover.jpg')
# add special tokens
icetk.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
# transform \n
icetk.decode(icetk.encode('abc\nhi', ignore_linebreak=False))
# 'abc\nhi'
icetk.decode(icetk.encode('abc\nhi'))
# 'abc hi'
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
icetk-0.0.6.tar.gz
(14.7 kB
view hashes)
Built Distribution
icetk-0.0.6-py3-none-any.whl
(15.8 kB
view hashes)