A package for image registration regularized by inverse consistency
Project description
ICON: Learning Regular Maps through Inverse Consistency
This is the official repository for
ICON: Learning Regular Maps through Inverse Consistency.
Hastings Greer, Roland Kwitt, Francois-Xavier Vialard, Marc Niethammer.
ICCV 2021 https://arxiv.org/abs/2105.04459
GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency.
Lin Tian, Hastings Greer, Francois-Xavier Vialard, Roland Kwitt, Raúl San José Estépar, Marc Niethammer.
CVPR 2023 https://arxiv.org/abs/2206.05897
Cite this work
@InProceedings{Greer_2021_ICCV,
author = {Greer, Hastings and Kwitt, Roland and Vialard, Francois-Xavier and Niethammer, Marc},
title = {ICON: Learning Regular Maps Through Inverse Consistency},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {3396-3405}
}
@article{Tian_2022_arXiv,
title={GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency},
author={Tian, Lin and Greer, Hastings and Vialard, Fran{\c{c}}ois-Xavier and Kwitt, Roland and Est{\'e}par, Ra{\'u}l San Jos{\'e} and Niethammer, Marc},
journal={arXiv preprint arXiv:2206.05897},
year={2022}
}
Video Presentation
Running our code
We are available on PyPI!
pip install icon-registration
To run our pretrained model in the cloud on sample images from OAI knees, visit our knee google colab notebook
To run our pretrained model for lung CT scans on an example from COPDgene, visit our lung google colab notebook
To train from scratch on the synthetic triangles and circles dataset:
git clone https://github.com/uncbiag/ICON
cd ICON
pip install -e .
python training_scripts/2d_triangles_example.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file icon_registration-1.1.5-py3-none-any.whl
.
File metadata
- Download URL: icon_registration-1.1.5-py3-none-any.whl
- Upload date:
- Size: 31.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16d01d5665b1ffe238bda3f569d4eb5d7597e9599e5c8fdfc0abfaac6f975699 |
|
MD5 | 5ffaae507ce6f2d262123a0007e1864d |
|
BLAKE2b-256 | 3a1da088828e51b6be26e524d281f8a26acac87eb047f0e2641e204206f4606e |