Invariant Causal Prediction for python
Project description
ICPy
This packages provides a simple python implementation of Invariant Causal Prediction (ICP) [1].
The source code for the actual algorithm resides in ./src/icp/ICP.py.
See also the original implementation in the R package InvariantCausalPrediction.
Installation
pip install ICPy
Usage
import icpy as icpy
import numpy as np
np.random.seed(seed=1)
n = 100
noise = 0.1
E = np.repeat([0, 1, 2], np.ceil(n / 3.0))[0:n] # "Environment"
A = np.random.normal(scale=noise, size=[n]) + np.equal(E, 1) # Node A
B = A + np.random.normal(scale=noise, size=[n]) / 3 + np.equal(E, 2) # Node B
C = B + np.random.normal(scale=noise, size=[n]) # Node C
# /--->---\
# E -> A -> B -> C
icpy.invariant_causal_prediction(X=np.column_stack((A, B)), y=C, z=E) # test if A or B are parents of C
Output
ICP(S_hat=array([1], dtype=int64), # Column 1 = Node B was (correctly) identified as parent of C
p_values=array([ 1.51508232e-01, 4.59577055e-37]), # error levels at which A and B would/are indentied as parent of C
p_value=0.16416488336322549) # p-value for testing against violation of the model assumptions (e.g. a direct effect of E on C)
News
v0.0.003 (2020-05-15)
- fix failing import (thanks to @lgmoneda, #1)
- fix issues when environments are not subsequent whole numbers starting at 0 (thanks to @lgmoneda, #1)
References
[1] J. Peters, P. Bühlmann, N. Meinshausen, Causal inference by using invariant prediction: identification and confidence intervals, J. R. Stat. Soc. Ser. B Stat. Methodol. 78 (2016) 947-1012. doi:10.1111/rssb.12167.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ICPy-0.0.6.tar.gz
(5.6 kB
view details)
Built Distribution
ICPy-0.0.6-py3-none-any.whl
(4.6 kB
view details)
File details
Details for the file ICPy-0.0.6.tar.gz
.
File metadata
- Download URL: ICPy-0.0.6.tar.gz
- Upload date:
- Size: 5.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f65df7f9d9be6f6bd52a77ffc8f0858aaa2c6dd4fc7958a278fb3f15cc2b538 |
|
MD5 | 09cff7133f00d06cfb39eb27bba88b12 |
|
BLAKE2b-256 | c225bf3d0b8f852f71d2808c180dbb126c16e2abd00bd5bf8a9cb0fc505e046a |
File details
Details for the file ICPy-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: ICPy-0.0.6-py3-none-any.whl
- Upload date:
- Size: 4.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e92a09337721b06543af3c3d95ce119c3276aa004c156e19c1cf037bc7c5f83c |
|
MD5 | 79fe46ab0db066bda89782ba9d6ebed2 |
|
BLAKE2b-256 | f95de7ca0300393659771690a65437e8ad2321cc6c2da42fa5c87130d164529d |