Skip to main content

Insight Extractor Package

Project description

TakeBlipInsightExtractor Package

Data & Analytics Research

Overview

Here is presented these content:

  • Intro
  • Run
  • [Example of initialization e usage](#Example of initialization e usage)

Intro

The Insight Extractor offers a way to analyze huge volumes of textual data in order to identify, cluster and detail subjects. This project achieves this results by way of applying a proprietary Named Entity Recognition (NER) algorithm followed by a clustering algorithm. The IE Cloud also allows any person to use this tool without having too many computational resources available to themselves.

The package outputs four types of files:

  • Wordcloud: It's an image file containing a wordcloud describing the most frequent subjects on the text. The colours represent the groups of similar subjects.

  • Wordtree: It's an html file which contains the graphic relationship between the subjects and the examples of uses in sentences. It's an interactive graphic where the user can navigate along the tree.

  • Hierarchy: It's a json file which contains the hierarchical relationship between subjects.

  • Table: It's a csv file containing the following columns:

      Message                   |  Entities                                                                                    | Groups     | Structured Message
      sobre cobranca inexistente|[{'value': 'cobrança', 'lowercase_value': 'cobrança', 'postags': 'SUBS', 'type': 'financial'}]|['cobrança']|sobre cobrança inexistente
    

Parameters

The following parameters need to be set by the user on the command line:

  • embedding_path: path to the embedding model, the file should end with .kv;
  • postagging_model_path: path to the postagging model, the file should end with .pkl;
  • postagging_label_path: path to the postagging label file, the file should end with .pkl;
  • ner_model_path: path to the ner model, the file should end with .pkl;
  • ner_label_path: path to the ner label file, the file should end with .pkl;
  • file: path to the csv file the user wants to analyze;
  • user_email: user's Take Blip email where they want to receive the analysis;
  • bot_name: bot ID.

The following parameters have default settings, but can be customized by the user;

  • node_messages_examples: it is an int representing the number of examples outputed for each subject on the Wordtree file. The default value is 100;
  • similarity_threshold: it is a float representing the similarity threshold between the subject groups. The default value is 0.65, we recommend that this parameter not be modified;
  • percentage_threshold: it is a float representing the frequency percentile of subject from which they are not removed from the analysis. The default value is 0.9;
  • batch_size: it is an int representing the batch size. The default value is 50;
  • chunk_size: it is an int representing chunk file size for upload in storaged. The default value is 1024;
  • separator: it is a str for the csv file delimiter character. The default value is '|'.

Example of initialization e usage:

  1. Import main packages;
  2. Initialize main variables;
  3. Initialize eventhub logger;
  4. Initialize Insight Extractor;
  5. Insight Extractor usage.

An example of the above steps could be found in the python code below:

  1. Import main packages
import uuid
from TakeBlipInsightExtractor.insight_extractor import InsightExtractor
from TakeBlipInsightExtractor.outputs.eventhub_log_sender import EventHubLogSender
  1. Initialize main variables
embedding_path = '*.kv'
postag_model_path = '*.pkl'
postag_label_path = '*.pkl'
ner_model_path = '*.pkl'
ner_label_path = '*.pkl'

user_email = 'your_email@host.com'
bot_name = 'my_bot_for_insight_extractor'
application_name = 'your application'

eventhub_name = '*'
eventhub_connection_string = '*'

file_name = '*'
input_data = '*.csv'
separator = '|'

similarity_threshold = 0.65
node_messages_examples = 100
batch_size = 1024
percentage_threshold = 0.7
  1. Initialize eventhub logger
correlation_id = str(uuid.uuid3(uuid.NAMESPACE_DNS, user_email + bot_name))
logger = EventHubLogSender(application_name=application_name,
                           user_email=user_email,
                           bot_name=bot_name,
                           file_name=file_name,
                           correlation_id=correlation_id,
                           connection_string=eventhub_connection_string,
                           eventhub_name=eventhub_name)
  1. Initialize Insight Extractor
insight_extractor = InsightExtractor(input_data,
                                     separator=separator,
                                     similarity_threshold=similarity_threshold,
                                     embedding_path=embedding_path,
                                     postagging_model_path=postag_model_path,
                                     postagging_label_path=postag_label_path,
                                     ner_model_path=ner_model_path,
                                     ner_label_path=ner_label_path,
                                     user_email=user_email,
                                     bot_name=bot_name,
                                     logger=logger)
  1. Insight Extractor usage
insight_extractor.predict(percentage_threshold=percentage_threshold,
                          node_messages_examples=node_messages_examples,
                          batch_size=batch_size)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ie-package-0.0.1.tar.gz (27.3 kB view details)

Uploaded Source

Built Distribution

ie_package-0.0.1-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file ie-package-0.0.1.tar.gz.

File metadata

  • Download URL: ie-package-0.0.1.tar.gz
  • Upload date:
  • Size: 27.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for ie-package-0.0.1.tar.gz
Algorithm Hash digest
SHA256 37bb185f1e187dc699a4baf1ed3152f8c761ee5340eb0c8e3e189cd3d9821d76
MD5 1f8a95113b2f8cdf038548003191a838
BLAKE2b-256 8ad219c4107ad281bb1c841010929c00af0777a92b82198099719fdb9607f0aa

See more details on using hashes here.

File details

Details for the file ie_package-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: ie_package-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for ie_package-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0788981a1d6e4d5260f0076841e9cfb3c659ca172e7d87644117649ca6cf539a
MD5 9ddbd075e62cd1eddfe88908653cb6f4
BLAKE2b-256 d600661345e2e6be4bd45e0decd1c1239c8386df8925d89d3c1c404a554dcc12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page