Library containing read, and preprocessing functions for imaging flow cytometry images contained in Lightning Memory-mapped Databases (lmdb).
Project description
ifcimglib
Install
Run:
pip install .
to install this package.
How to use
cif2lmdb
can be used as follows:
Usage: cif2lmdb [OPTIONS] CIF
Options:
--output FILE Output filename. If not set, cif-filename is taken with
lmdb extension.
--channels INTEGER Images from these channels will be extracted. Default is
to extract all. 1-based index.
--names TEXT Names to assign to channels.
--debug Show debugging information. Limits output to 100 first
cells.
--overwrite Overwrite lmdb if it exists.
--targets-npy FILE Numpy binary file containing targets.
--skip-npy FILE Numpy binary file containing instances to be skipped.
--help Show this message and exit.
Here is an example command:
cif2lmdb --channels 1 --channels 6 --channels 9 --names BF --names SSC --names BF2 --output tmp.lmdb --debug --overwrite input.cif
It takes input.cif as input and outputs output.lmdb, an lmdb-file containing 100 (see debug flag) 3-channel images with names BF, SSC and BF2.
Please see the imglmdb.ipynb notebook for usage examples of the imglmdb
package.
Docker
Docker images are available for cif2lmdb (tag cif2lmdb), the jupyter lab environment (tag jupyter-lab-env), and the notebooks in this repository (tag notebooks).
For using cif2lmdb, run:
docker run --rm -v /path/to/data/dir:/data maximlippeveld/ifcimglib:cif2lmdb [OPTIONS] /data/example.cif
For using the jupyter environment, run:
docker run --it -v /path/to/data/dir:/data -v /path/to/your/code/dir:/app -p [your-port]:8888 maximlippeveld/ifcimglib:jupyter-lab-env
Fur using the notebooks in this repository, run:
docker run --it -v /path/to/data/dir:/data -p [your-port]:8888 maximlippeveld/ifcimglib:notebooks
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ifcimglib-0.1.3.tar.gz
.
File metadata
- Download URL: ifcimglib-0.1.3.tar.gz
- Upload date:
- Size: 16.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1fb2eccc4c3119d2e358e3b5ea99cff0d978b6810c58611e321f24681cf3eddd |
|
MD5 | c928c2712c0540c17e2a17289d1222ef |
|
BLAKE2b-256 | 6bda13756017563e9e65df3326968ef65317fd2f3159258b4c7011fb6414436c |
File details
Details for the file ifcimglib-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: ifcimglib-0.1.3-py3-none-any.whl
- Upload date:
- Size: 17.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d9c26cf78ac65ca8b01a5d8c4e8410b3af70566441d3eed71227b6b7eff46330 |
|
MD5 | af2f78256cd4d942c6fc132063b15dde |
|
BLAKE2b-256 | fbcc23253b856772aee49a2d3b40b0f840ed75a35405f49b585deaba3f9a69be |