Skip to main content

Library containing read, and preprocessing functions for imaging flow cytometry images contained in Lightning Memory-mapped Databases (lmdb).

Project description

ifcimglib

Install

Run:

pip install .

to install this package.

How to use

cif2lmdb can be used as follows:

Usage: cif2lmdb [OPTIONS] CIF

Options:
  --output FILE       Output filename. If not set, cif-filename is taken with
                      lmdb extension.

  --channels INTEGER  Images from these channels will be extracted. Default is
                      to extract all. 1-based index.

  --names TEXT        Names to assign to channels.
  --debug             Show debugging information. Limits output to 100 first
                      cells.

  --overwrite         Overwrite lmdb if it exists.
  --targets-npy FILE  Numpy binary file containing targets.
  --skip-npy FILE     Numpy binary file containing instances to be skipped.
  --help              Show this message and exit.

Here is an example command:

cif2lmdb --channels 1 --channels 6 --channels 9 --names BF --names SSC --names BF2 --output tmp.lmdb --debug --overwrite input.cif

It takes input.cif as input and outputs output.lmdb, an lmdb-file containing 100 (see debug flag) 3-channel images with names BF, SSC and BF2.

Please see the imglmdb.ipynb notebook for usage examples of the imglmdb package.

Docker

docker badge

Docker images are available for cif2lmdb (tag cif2lmdb), the jupyter lab environment (tag jupyter-lab-env), and the notebooks in this repository (tag notebooks).

For using cif2lmdb, run:

docker run --rm -v /path/to/data/dir:/data maximlippeveld/ifcimglib:cif2lmdb [OPTIONS] /data/example.cif

For using the jupyter environment, run:

docker run --it -v /path/to/data/dir:/data -v /path/to/your/code/dir:/app -p [your-port]:8888 maximlippeveld/ifcimglib:jupyter-lab-env

Fur using the notebooks in this repository, run:

docker run --it -v /path/to/data/dir:/data -p [your-port]:8888 maximlippeveld/ifcimglib:notebooks

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ifcimglib-0.1.3.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

ifcimglib-0.1.3-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file ifcimglib-0.1.3.tar.gz.

File metadata

  • Download URL: ifcimglib-0.1.3.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ifcimglib-0.1.3.tar.gz
Algorithm Hash digest
SHA256 1fb2eccc4c3119d2e358e3b5ea99cff0d978b6810c58611e321f24681cf3eddd
MD5 c928c2712c0540c17e2a17289d1222ef
BLAKE2b-256 6bda13756017563e9e65df3326968ef65317fd2f3159258b4c7011fb6414436c

See more details on using hashes here.

File details

Details for the file ifcimglib-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: ifcimglib-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ifcimglib-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d9c26cf78ac65ca8b01a5d8c4e8410b3af70566441d3eed71227b6b7eff46330
MD5 af2f78256cd4d942c6fc132063b15dde
BLAKE2b-256 fbcc23253b856772aee49a2d3b40b0f840ed75a35405f49b585deaba3f9a69be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page