Skip to main content

Influence graph analysis, consistency check, repair and prediction

Project description

Installation
============


You can install iggy by running::

$ pip install --user iggy

The executable scripts can then be found in ~/.local/bin.


Usage
=====

Typical usage is::

$ iggy.py network.sif observation.obs --show_colorings 10 --show_predictions

For more options you can ask for help as follows::

$ iggy.py -h
usage: iggy.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences] [--no_founded_constraint]
[--autoinputs] [--scenfit] [--show_colorings SHOW_COLORINGS]
[--show_predictions]
networkfile observationfile

positional arguments:
networkfile influence graph in SIF format
observationfile observations in bioquali format

optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--scenfit compute scenfit of the data, default is mcos
--show_colorings SHOW_COLORINGS
number of colorings to print, default is OFF, 0=all
--show_predictions show predictions


The second script contained is opt_graph.py
Typical usage is::

$ opt_graph.py network.sif observations_dir/ --show_repairs 10

For more options you can ask for help as follows::

$ opt_graph.py -h
usage: opt_graph.py [-h] [--no_zero_constraints]
[--propagate_unambigious_influences]
[--no_founded_constraint] [--autoinputs]
[--show_repairs SHOW_REPAIRS] [--opt_graph]
networkfile observationfiles

positional arguments:
networkfile influence graph in SIF format
observationfiles directory of observations in bioquali format

optional arguments:
-h, --help show this help message and exit
--no_zero_constraints
turn constraints on zero variations OFF, default is ON
--propagate_unambigious_influences
turn constraints ON that if all predecessor of a node
have the same influence this must have an effect,
default is ON
--no_founded_constraint
turn constraints OFF that every variation must be
explained by an input, default is ON
--autoinputs compute possible inputs of the network (nodes with
indegree 0)
--show_repairs SHOW_REPAIRS
number of repairs to show, default is OFF, 0=all
--opt_graph compute opt-graph repairs (allows also adding edges),
default is only removing edges


Samples
=======

Sample files available here:: iggy_demo_data.tar.gz_

.. _iggy_demo_data.tar.gz: http://www.cs.uni-potsdam.de/~sthiele/bioasp/downloads/samples/iggy_demo_data.tar.gz

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for iggy, version 0.2
Filename, size File type Python version Upload date Hashes
Filename, size iggy-0.2.tar.gz (287.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page