Python wrapper of R package `iglu` for continuous glucose monitoring data analysis. Wraps the R functions, thus making them accessible in Python.
Project description
Purpose
We are releasing a Python wrapper iglu-py (PyPI, GitHub) for the R package "iglu" (iglu-r), since a large number of developers and diabetes researchers program primarily in Python. We hope this abstraction makes development with iglu even easier and more user-friendly.
Note that iglu-r is the "source of truth" and all iglu-py functions simply call the corresponding iglu-r function internally. In other words, there is no new functionality in iglu-py that is not iglu-r (see Functionality below for more details).
Citation
Please cite both iglu-py and the original iglu-r package.
Chun E, Fernandes NJ, & Gaynanova I (2024). An Update on the iglu Software Package for Interpreting Continuous Glucose Monitoring Data. Diabetes Technology & Therapeutics. Python package version X.X.X.
Broll S, Buchanan D, Chun E, Muschelli J, Fernandes N, Seo J, Shih J, Urbanek J, Schwenck J, Gaynanova I (2021). iglu: Interpreting Glucose Data from Continuous Glucose Monitors. R package version X.X.X.
Getting Started
System Requirements
Please ensure the following requirements are met for iglu-py to work properly.
- Python >= 3.8.0
- rpy2 >= 3.5.13
- pandas >= 2.0.0
Installation
$ pip install iglu-py
This will automatically install all the necessary Python dependencies for you.
There is no need to download R, iglu-r, or any other CRAN package directly. Version 4.0.0 of iglu-r comes bundled with iglu-py and will be installed automatically on the first runtime.
⚠️ If you already have iglu-r installed on your machine, iglu-py will use that version of iglu-r internally instead of the bundled version.
See Changing the Version of "iglu-r" Used by "iglu-py" below to change to your desired version.
How to Use
import iglu_py as iglu
import pandas as pd
# 1. Load pandas DF through any method, not exclusive to CSV
# DF must have 3 columns:
# > id: string or int
# > time: POSIX.ct()
# > gl: numeric type
df = pd.read_csv('path_to_file.csv')
# 2. Run metrics
# The output is a pandas DF.
iglu.mean_glu(df)
iglu.mage(df) # uses default arguments in iglu-py
iglu.mage(df, short_ma = 3, long_ma = 35) # overrides defaults
# 3. Load example data
example_data: pd.DataFrame = iglu.example_data_1_subject
iglu.mage(example_data)
# 4. Launch interactive GUI
iglu.iglu_shiny()
See Functionality below for the list of Python functions and data available in iglu-py. See iglu-r Function Documentation to know the acceptable arguments & data types for the implemented iglu-py functions.
When reading the aforementioned iglu-r documentation & coding in Python, always use Python types not R ones. Only use types in the Python column of the table below.
Python | R |
---|---|
True/False | TRUE/FALSE |
Pandas DataFrame | tibble |
Pandas DataFrame | Data Frame |
str | character |
int|float | numeric |
list | vector |
Changing the Version of "iglu-r" Used by "iglu-py"
By default, the R-version [iglu v4.0.0](https://github.com/irinagain/iglu/blob/master/NEWS.md) comes embedded in iglu-py. However, you can change this version if you desire.Follow these simple steps below.
- Uninstall Previous iglu-r Version: run the following code in Python to delete the previous version of iglu
import iglu_py
iglu_py.uninstall_iglu()
-
Install a new version of iglu:
- Way 1: Download most recent version released on CRAN
import iglu_py iglu_py.install_iglu(name = 'iglu', name_type = 'CRAN')
- Way 2: Get a TAR GZIP file of the desired iglu-r version from CRAN or make one by tar-gzipping the iglu-r GitHub repo (the GitHub is slightly ahead of official-release on CRAN). Then do:
import iglu_py iglu_py.install_iglu(name = 'absolute/path/to/file', name_type = 'absolute')
-
Update Metrics, If Needed: You only need to edit the iglu-py source code in Case 2 & 3 below.
-
CASE 1: A metric in the new iglu-r version has different default parameters from the old iglu-r version
- No change to iglu-py source code needed. Simply use the iglu-py function as normal, passing in the required parameters and any optional ones as well.
-
CASE 2: A metric in the new iglu-r version has different non-default/required parameters
- Add the parameters to the function definition in
package-path/iglu_py/metrics.py
- Then, in the
package-path
directory, run in the terminal
cd directory/to/package-path/ pip uninstall iglu_py pip install .
- Add the parameters to the function definition in
-
CASE 3: The new
iglu-r
version has a metric not in previous iglu version:- add the metric to the
package-path/iglu_py/metrics.py
file following the examples already there (note: don't add "default parameters" to the function definition - instead, use**kwargs
in Python to prevent overriding those defaults specified in the R package) - import the metric into the
package-path/iglu_py/__init__.py
file
- add the metric to the
-
Functionality
iglu-py allows most functionality in iglu-r including all metrics, data processing functions, and an interactive GUI.
However, plotting programmatically is unavailable. Please use the Shiny app to generate and download plots in iglu-py or the original iglu R package. (There is no plan to support plotting programmatically in iglu-py due to the complexity of the task.)
See the tables below to understand what is accessible in iglu-py vs. iglu-r.
Feature | Python | R | Comment |
---|---|---|---|
Interactive GUI | iglu.iglu_shiny() | iglu::iglu_shiny() | |
All Plots | ❌ | ✅ | |
Example Data | iglu.example_data_X_subject iglu.example_meals_hall iglu.example_data_hall |
iglu::example_data_X_subject iglu::example_meals_hall iglu::example_data_hall |
X=1,5 |
Metrics | Python | R | Comment |
---|---|---|---|
CGMS2DayByDay | iglu.CGMS2DayByDay() | iglu::CGMS2DayByDay() | |
Above % | iglu.above_percent() | iglu::above_percent() | |
Active % | iglu.active_percent() | iglu::active_percent() | |
ADRR | iglu.adrr() | iglu::adrr() | |
AGP | ❌ | iglu::agp() | Is a plot |
AGP Metrics | iglu.agp_metrics() | iglu::agp_metrics() | |
All Metrics | iglu.all_metrics() | iglu::all_metrics | |
AUC | iglu.auc() | iglu::auc() | |
Below % | iglu.below_percent() | iglu::below_percent() | |
Calculate Sleep Wake | ❌ | iglu::calculate_sleep_wake() | Is a plot |
COGI | iglu.cogi() | iglu::cogi() | |
CONGA | iglu.conga() | iglu::conga() | |
Coefficient of Variation (CV) | iglu.cv_glu() | iglu::cv_glu() | |
Coefficient of Variation subtypes | iglu.cv_measures() | iglu::cv_measures() | |
eA1C | iglu.ea1c() | iglu::ea1c() | |
Episode Calculation Profile | ❌ | iglu::epicalc_profile() | Is a plot |
Episode Calculation | iglu.episode_calculation() | iglu::episode_calculation() | |
GMI | iglu.gmi() | iglu::gmi() | |
GRADE | iglu.grade() | iglu::grade() | |
Grade Eugly | iglu.grade_eugly() | iglu::grade_eugly() | |
Grade Hyper | iglu.grade_hyper() | iglu::grade_hyper() | |
Grade Hypo | iglu.grade_hypo() | iglu::grade_hypo() | |
GRI | iglu.gri() | iglu::gri() | |
GVP | iglu.gvp() | iglu::gvp() | |
HBGI | iglu.hbgi() | iglu::hbgi() | |
Hist_roc | ❌ | iglu::hist_roc() | Is a plot |
Hyperglucemia Index | iglu.hyper_index() | iglu::hyper_index() | |
Hypoglycemia Index | iglu.hypo_index() | iglu::hypo_index() | |
Index of Glycemic Control | iglu.igc() | iglu::igc() | |
% in target range | iglu.in_range_percent() | iglu::in_range_percent() | |
IQR | iglu.iqr_glu() | iglu::iqr_glu() | |
J-Index | iglu.j_index() | iglu::j_index() | |
LBGI | iglu.lbgi() | iglu::lbgi() | |
M-Value | iglu.m_value() | iglu::m_value() | |
MAD | iglu.mad_glu() | iglu::mad_glu() | |
MAG | iglu.mag() | iglu::mag() | |
MAGE | iglu.mage() | iglu::mage() | |
Meal Metrics | ❌ | iglu::meal_metrics() | |
Mean | iglu.mean_glu() | iglu::mean_glu() | |
Median | iglu.median_glu() | iglu::median_glu() | |
Metrics Heatmap | ❌ | iglu::metrics_heatmap() | |
MODD | iglu.modd() | iglu::modd() | |
PGS | iglu.pgs() | iglu::pgs() | |
Process Data | iglu.process_data() | iglu::process_data() | |
Quantile | iglu.quantile_glu() | iglu::quantile_glu() | |
Range | iglu.range_glu() | iglu::range_glu() | |
Read Raw Data | iglu.read_raw_data() | iglu::read_raw_data() | |
ROC | iglu.roc() | iglu::roc() | |
SD | iglu.sd_glu() | iglu::sd_glu() | |
SD Measures | iglu.sd_measures() | iglu::sd_measures() | |
SD ROC | iglu.sd_roc() | iglu::sd_glu() | |
Summary | iglu.summary_glu() | iglu::summary_glu() |
License Agreements
-
By using this package, you agree to the license agreement of the R version of iglu, which is GPL-2.
-
By using the data included in this package, you consent to the following User Agreement.
Use of the T1D Exchange publicly-available data requires that you include the following attribution and disclaimer in any publication, presentation or communication resulting from use of these data:
The source of the data is the T1D Exchange, but the analyses, content and conclusions presented herein are solely the responsibility of the authors and have not been reviewed or approved by the T1D Exchange.
In addition, the T1D Exchange should be notified via email (publicdatasetuse@t1dexchange.org) when a manuscript (send title) or abstract (send title and name of meeting) reports T1D Exchange data or analyses of the data. Please provide notification at the time of submission and again at time of acceptance.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file iglu_py-1.1.1.tar.gz
.
File metadata
- Download URL: iglu_py-1.1.1.tar.gz
- Upload date:
- Size: 5.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b49ffde43df3afbbd2900d64ff667dc4a0a1ae8bbb6ce9ee198eb209604a63ec |
|
MD5 | 6b485292c67be692eefb3798effa6c9e |
|
BLAKE2b-256 | bac44525e3b5f5a37bc7eedb71c83b03c5cd63a191765226f27745ad739d9589 |
File details
Details for the file iglu_py-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: iglu_py-1.1.1-py3-none-any.whl
- Upload date:
- Size: 5.5 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 665a4b19db5eaf3890e2ccb02fc3389101881c0b1d48cf06418e461a52b31566 |
|
MD5 | fcc6a288e46eb6f39b3dfece0a793741 |
|
BLAKE2b-256 | 7debde5737769187449b6b8b839c90fab3187fb6c81f56ec5d61055a116c8ead |