Skip to main content

Python wrapper of R package `iglu` for continuous glucose monitoring data analysis. Wraps the R functions, thus making them accessible in Python.

Project description

Purpose

We are releasing a Python wrapper iglu-py (PyPI, GitHub) for the R package "iglu" (iglu-r), since a large number of developers and diabetes researchers program primarily in Python. We hope this abstraction makes development with iglu even easier and more user-friendly.

Note that iglu-r is the "source of truth" and all iglu-py functions simply call the corresponding iglu-r function internally. In other words, there is no new functionality in iglu-py that is not iglu-r (see Functionality below for more details).

Citation

Please cite both iglu-py and the original iglu-r package.

Chun E, Fernandes NJ, & Gaynanova I (2024). An Update on the iglu Software Package for Interpreting Continuous Glucose Monitoring Data. Diabetes Technology & Therapeutics. Python package version X.X.X.

Broll S, Buchanan D, Chun E, Muschelli J, Fernandes N, Seo J, Shih J, Urbanek J, Schwenck J, Gaynanova I (2021). iglu: Interpreting Glucose Data from Continuous Glucose Monitors. R package version X.X.X.

Getting Started

System Requirements

Please ensure the following requirements are met for iglu-py to work properly.

  • Python >= 3.8.0
  • rpy2 >= 3.5.13
  • pandas >= 2.0.0

Installation

$ pip install iglu-py

This will automatically install all the necessary Python dependencies for you.

There is no need to download R, iglu-r, or any other CRAN package directly. Version 4.0.0 of iglu-r comes bundled with iglu-py and will be installed automatically on the first runtime.

⚠️ If you already have iglu-r installed on your machine, iglu-py will use that version of iglu-r internally instead of the bundled version.

See Changing the Version of "iglu-r" Used by "iglu-py" below to change to your desired version.

How to Use

import iglu_py as iglu
import pandas as pd

# 1. Load pandas DF through any method, not exclusive to CSV
# DF must have 3 columns:
# > id: string or int
# > time: POSIX.ct()
# > gl: numeric type

df = pd.read_csv('path_to_file.csv')

# 2. Run metrics
# The output is a pandas DF.

iglu.mean_glu(df)

iglu.mage(df) # uses default arguments in iglu-py
iglu.mage(df, short_ma = 3, long_ma = 35) # overrides defaults

# 3. Load example data
example_data: pd.DataFrame = iglu.example_data_1_subject

iglu.mage(example_data)

# 4. Launch interactive GUI
iglu.iglu_shiny()

See Functionality below for the list of Python functions and data available in iglu-py. See iglu-r Function Documentation to know the acceptable arguments & data types for the implemented iglu-py functions.

When reading the aforementioned iglu-r documentation & coding in Python, always use Python types not R ones. Only use types in the Python column of the table below.

Python R
True/False TRUE/FALSE
Pandas DataFrame tibble
Pandas DataFrame Data Frame
str character
int|float numeric
list vector

Changing the Version of "iglu-r" Used by "iglu-py"

By default, the R-version [iglu v4.0.0](https://github.com/irinagain/iglu/blob/master/NEWS.md) comes embedded in iglu-py. However, you can change this version if you desire.

Follow these simple steps below.

  1. Uninstall Previous iglu-r Version: run the following code in Python to delete the previous version of iglu
import iglu_py

iglu_py.uninstall_iglu()
  1. Install a new version of iglu:

    • Way 1: Download most recent version released on CRAN
    import iglu_py
    
    iglu_py.install_iglu(name = 'iglu', name_type = 'CRAN')
    
    • Way 2: Get a TAR GZIP file of the desired iglu-r version from CRAN or make one by tar-gzipping the iglu-r GitHub repo (the GitHub is slightly ahead of official-release on CRAN). Then do:
    import iglu_py
    
    iglu_py.install_iglu(name = 'absolute/path/to/file', name_type = 'absolute')
    
  2. Update Metrics, If Needed: You only need to edit the iglu-py source code in Case 2 & 3 below.

    • CASE 1: A metric in the new iglu-r version has different default parameters from the old iglu-r version

      • No change to iglu-py source code needed. Simply use the iglu-py function as normal, passing in the required parameters and any optional ones as well.
    • CASE 2: A metric in the new iglu-r version has different non-default/required parameters

      • Add the parameters to the function definition in package-path/iglu_py/metrics.py
      • Then, in the package-path directory, run in the terminal
      cd directory/to/package-path/
      pip uninstall iglu_py
      pip install . 
      
    • CASE 3: The new iglu-r version has a metric not in previous iglu version:

      1. add the metric to the package-path/iglu_py/metrics.py file following the examples already there (note: don't add "default parameters" to the function definition - instead, use **kwargs in Python to prevent overriding those defaults specified in the R package)
      2. import the metric into the package-path/iglu_py/__init__.py file

Functionality

iglu-py allows most functionality in iglu-r including all metrics, data processing functions, and an interactive GUI.

However, plotting programmatically is unavailable. Please use the Shiny app to generate and download plots in iglu-py or the original iglu R package. (There is no plan to support plotting programmatically in iglu-py due to the complexity of the task.)

See the tables below to understand what is accessible in iglu-py vs. iglu-r.

Feature Python R Comment
Interactive GUI iglu.iglu_shiny() iglu::iglu_shiny()
All Plots
Example Data iglu.example_data_X_subject
iglu.example_meals_hall
iglu.example_data_hall
iglu::example_data_X_subject
iglu::example_meals_hall
iglu::example_data_hall
X=1,5
Metrics Python R Comment
CGMS2DayByDay iglu.CGMS2DayByDay() iglu::CGMS2DayByDay()
Above % iglu.above_percent() iglu::above_percent()
Active % iglu.active_percent() iglu::active_percent()
ADRR iglu.adrr() iglu::adrr()
AGP iglu::agp() Is a plot
AGP Metrics iglu.agp_metrics() iglu::agp_metrics()
All Metrics iglu.all_metrics() iglu::all_metrics
AUC iglu.auc() iglu::auc()
Below % iglu.below_percent() iglu::below_percent()
Calculate Sleep Wake iglu::calculate_sleep_wake() Is a plot
COGI iglu.cogi() iglu::cogi()
CONGA iglu.conga() iglu::conga()
Coefficient of Variation (CV) iglu.cv_glu() iglu::cv_glu()
Coefficient of Variation subtypes iglu.cv_measures() iglu::cv_measures()
eA1C iglu.ea1c() iglu::ea1c()
Episode Calculation Profile iglu::epicalc_profile() Is a plot
Episode Calculation iglu.episode_calculation() iglu::episode_calculation()
GMI iglu.gmi() iglu::gmi()
GRADE iglu.grade() iglu::grade()
Grade Eugly iglu.grade_eugly() iglu::grade_eugly()
Grade Hyper iglu.grade_hyper() iglu::grade_hyper()
Grade Hypo iglu.grade_hypo() iglu::grade_hypo()
GRI iglu.gri() iglu::gri()
GVP iglu.gvp() iglu::gvp()
HBGI iglu.hbgi() iglu::hbgi()
Hist_roc iglu::hist_roc() Is a plot
Hyperglucemia Index iglu.hyper_index() iglu::hyper_index()
Hypoglycemia Index iglu.hypo_index() iglu::hypo_index()
Index of Glycemic Control iglu.igc() iglu::igc()
% in target range iglu.in_range_percent() iglu::in_range_percent()
IQR iglu.iqr_glu() iglu::iqr_glu()
J-Index iglu.j_index() iglu::j_index()
LBGI iglu.lbgi() iglu::lbgi()
M-Value iglu.m_value() iglu::m_value()
MAD iglu.mad_glu() iglu::mad_glu()
MAG iglu.mag() iglu::mag()
MAGE iglu.mage() iglu::mage()
Meal Metrics iglu::meal_metrics()
Mean iglu.mean_glu() iglu::mean_glu()
Median iglu.median_glu() iglu::median_glu()
Metrics Heatmap iglu::metrics_heatmap()
MODD iglu.modd() iglu::modd()
PGS iglu.pgs() iglu::pgs()
Process Data iglu.process_data() iglu::process_data()
Quantile iglu.quantile_glu() iglu::quantile_glu()
Range iglu.range_glu() iglu::range_glu()
Read Raw Data iglu.read_raw_data() iglu::read_raw_data()
ROC iglu.roc() iglu::roc()
SD iglu.sd_glu() iglu::sd_glu()
SD Measures iglu.sd_measures() iglu::sd_measures()
SD ROC iglu.sd_roc() iglu::sd_glu()
Summary iglu.summary_glu() iglu::summary_glu()

License Agreements

  1. By using this package, you agree to the license agreement of the R version of iglu, which is GPL-2.

  2. By using the data included in this package, you consent to the following User Agreement.

Use of the T1D Exchange publicly-available data requires that you include the following attribution and disclaimer in any publication, presentation or communication resulting from use of these data:

The source of the data is the T1D Exchange, but the analyses, content and conclusions presented herein are solely the responsibility of the authors and have not been reviewed or approved by the T1D Exchange.

In addition, the T1D Exchange should be notified via email (publicdatasetuse@t1dexchange.org) when a manuscript (send title) or abstract (send title and name of meeting) reports T1D Exchange data or analyses of the data. Please provide notification at the time of submission and again at time of acceptance.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iglu_py-1.1.1.tar.gz (5.5 MB view details)

Uploaded Source

Built Distribution

iglu_py-1.1.1-py3-none-any.whl (5.5 MB view details)

Uploaded Python 3

File details

Details for the file iglu_py-1.1.1.tar.gz.

File metadata

  • Download URL: iglu_py-1.1.1.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for iglu_py-1.1.1.tar.gz
Algorithm Hash digest
SHA256 b49ffde43df3afbbd2900d64ff667dc4a0a1ae8bbb6ce9ee198eb209604a63ec
MD5 6b485292c67be692eefb3798effa6c9e
BLAKE2b-256 bac44525e3b5f5a37bc7eedb71c83b03c5cd63a191765226f27745ad739d9589

See more details on using hashes here.

File details

Details for the file iglu_py-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: iglu_py-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for iglu_py-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 665a4b19db5eaf3890e2ccb02fc3389101881c0b1d48cf06418e461a52b31566
MD5 fcc6a288e46eb6f39b3dfece0a793741
BLAKE2b-256 7debde5737769187449b6b8b839c90fab3187fb6c81f56ec5d61055a116c8ead

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page