Skip to main content

Python package to manipulate and run IGoR data files

Project description

Pygor3

Pygor3 is a python3 framework to analyze, vizualize, generate and infer V(D)J recombination IGoR 's models. Pygor3 provide a python interface to execute and encapsulate IGoR’s input/outputs by using a sqlite3 database that contains input sequences, alignments, model parameters, conditional probabilities of the model Bayes network, best scenarios and generation probabilities in a single db file. Pygor3 also has command line utilities to import/export IGoR generated files to AIRR standard format.

Installation

  1. First install IGoR in your sytem IGoR if you don't have it already. Pygor will use default IGoR's path to execute it.

  2. (Optional) Install conda or anaconda and create (or use ) a virtual environment.

      $ conda create --name statbiophys python=3.7
      $ conda activate statbiophys
    
  3. Use the package manager pip

    (statbiophys) $ pip install pygor3 
    

Command Line Usage

Quickstart

Get demo sample data

Get a copy of demo sequences in current directory

$ pygor demo-get-data
--------------------------------
Copy data from :  /home/olivares/GitHub/statbiophys/pygor3/pygor3/demo
to:  /home/olivares/testing_pygor/demo

This command creates a directory demo with the following structure, with sequences to infer and evaluate a new model.

demo/
└── data
    └── IgL
        ├── IgL_seqs_memory_Functional.txt
        ├── IgL_seqs_memory_Nofunctional.txt
        ├── IgL_seqs_naive_Functional.txt
        └── IgL_seqs_naive_Nofunctional.txt

New Model

Now to create a model from scratch, donwload gene templates and anchors from IMGT website IMGT A list of available species to download from IMGT can be query with imgt-get-genomes command and option --info.

```console
$ pygor imgt-get-genomes --info
--------------------------------
http://www.imgt.org
Downloading data from ... 
List of IMGT available species:

Gallus+gallus
Cercocebus+atys
Mustela+putorius+furo
Macaca+nemestrina
Vicugna+pacos
Mus+cookii
Bos+taurus
Canis+lupus+familiaris
Ornithorhynchus+anatinus
Macaca+mulatta
Rattus+rattus
Mus+minutoides
Danio+rerio
Oncorhynchus+mykiss
Tursiops+truncatus
Felis+catus
Homo+sapiens
Salmo+salar
Macaca+fascicularis
Mus+musculus
Mus+saxicola
Capra+hircus
Sus+scrofa
Mus+pahari
Ovis+aries
Equus+caballus
Camelus+dromedarius
Oryctolagus+cuniculus
Papio+anubis+anubis
Mus+spretus
Rattus+norvegicus
For more details access:
http://www.imgt.org/download/GENE-DB/IMGTGENEDB-GeneList
```
  1. Download genomic templates using VJ or VDJ corresponding to the type of chain.

    $ pygor imgt-get-genomes --imgt-species Homo+sapiens --imgt-chain IGL -t VJ
    --------------------------------
    http://www.imgt.org
    get_ref_genome
    Homo+sapiens IGLV http://www.imgt.org/genedb/GENElect?query=7.2+IGLV&species=Homo+sapiens
    http://www.imgt.org/genedb/GENElect?query=7.2+IGLV&species=Homo+sapiens
    Homo+sapiens IGLJ http://www.imgt.org/genedb/GENElect?query=7.2+IGLJ&species=Homo+sapiens
    http://www.imgt.org/genedb/GENElect?query=7.2+IGLJ&species=Homo+sapiens
    http://www.imgt.org/genedb/GENElect?query=8.1+IGLV&species=Homo+sapiens&IMGTlabel=2nd-CYS
    No anchor is found for : AC279423|IGLV(I)-11-1*01|Homo sapiens|P|V-REGION|22452..22620|169 nt|1| | | | |169+0=169|partial in 5'| |
    No anchor is found for : D87007|IGLV(I)-20*01|Homo sapiens|P|V-REGION|15573..15858|286 nt|1| | | | |286+0=286| | |
    No anchor is found for : AC279208|IGLV(I)-20*02|Homo sapiens|P|V-REGION|19943..20228|286 nt|1| | | | |286+0=286| | |
    
    ...
    
    Number of features: 0
    Seq('TGCTGTGTTCGGAGGAGGCACCCAGCTGACCGTCCTCG')
    ID: D87017|IGLJ7*02|Homo
    Name: D87017|IGLJ7*02|Homo
    Description: D87017|IGLJ7*02|Homo sapiens|F|J-REGION|18513..18550|38 nt|2| | | | |38+0=38| | |
    Number of features: 0
    Seq('TGCTGTGTTCGGAGGAGGCACCCAGCTGACCGCCCTCG')
    ----------------------
    Genomic VJ templates in files: 
    models/Homo+sapiens/IGL/ref_genome/genomicVs__imgt.fasta models/Homo+sapiens/IGL/ref_genome/genomicJs__imgt.fasta
    

    This creates a directory models with the following structure will be created

    models/
    └── Homo+sapiens
        └── TRB
            ├── models
            └── ref_genome
                ├── genomicDs.fasta
                ├── genomicDs__imgt.fasta
                ├── genomicDs__imgt.fasta_short
                ├── genomicJs.fasta
                ├── genomicJs__imgt.fasta
                ├── genomicJs__imgt.fasta_short
                ├── genomicJs__imgt.fasta_trim
                ├── genomicVs.fasta
                ├── genomicVs__imgt.fasta
                ├── genomicVs__imgt.fasta_short
                ├── genomicVs__imgt.fasta_trim
                ├── J_gene_CDR3_anchors.csv
                ├── J_gene_CDR3_anchors__imgt.csv
                ├── J_gene_CDR3_anchors__imgt.csv_short
                ├── V_gene_CDR3_anchors.csv
                ├── V_gene_CDR3_anchors__imgt.csv
                └── V_gene_CDR3_anchors__imgt.csv_short
    
    

    Important Note It is important to review carefully your downloaded genes templates. Pygor automatically rename to long IMGT descriptions to a short one. For instance

    D86996|IGLV(I)-56*01|Homo sapiens|P|V-REGION|12276..12571|296 nt|1| | | | |296+0=296| | |

    D86996|IGLV(I)-56*01|Homo sapiens|P|V-REGION|12576..12876|301 nt|1| | | | |301+0=301| | |

    Are renamed as :

    IGLV(I)-56*01

    IGLV(I)-56*01

    For these cases, is important to rename it or remove it manually, before create a new model. For simplicity in this demo we remove the second IGLV(I)-56*01


  2. Create a new initial default model, with uniform distribution for the conditional probabilities of Bayes network ("model_marginals.txt" file). Notice that in IGoR this file is called marginals, but it is not the marginal probability of a recombination event.

    $ pygor model-create -M models/Homo+sapiens/IGL/ -t VJ
    --------------------------------
    No D genes were found.
    [Errno 2] No such file or directory: 'models/Homo+sapiens/IGL//ref_genome//genomicDs.fasta'
    No D genes were found.
    [Errno 2] No such file or directory: 'models/Homo+sapiens/IGL//ref_genome//genomicDs.fasta'
    igortask.igor_model_dir_path:  models/Homo+sapiens/IGL/
    Writing model parms in file  models/Homo+sapiens/IGL//models/model_parms.txt
    Writing model marginals in file  models/Homo+sapiens/IGL//models/model_marginals.txt    
    

    A uniform model files will be created in files model_parms.txt and model_marginals.txt at directory path

    models/
    └── Homo+sapiens
        └── IGL
            ├── models
            │   ├── model_marginals.txt
            │   └── model_parms.txt
            └── ref_genome
                ├── genomicJs.fasta
                ├── genomicJs__imgt.fasta
                ├── genomicJs__imgt.fasta_short
                ├── genomicJs__imgt.fasta_trim
                ├── genomicVs.fasta
                ├── genomicVs__imgt.fasta
                ├── genomicVs__imgt.fasta_short
                ├── genomicVs__imgt.fasta_trim
                ├── J_gene_CDR3_anchors.csv
                ├── J_gene_CDR3_anchors__imgt.csv
                ├── J_gene_CDR3_anchors__imgt.csv_short
                ├── V_gene_CDR3_anchors.csv
                ├── V_gene_CDR3_anchors__imgt.csv
                └── V_gene_CDR3_anchors__imgt.csv_short
    

    At this point you can use a set of non-productive sequence to infer a model within IGoR directly or by using pygor command.

    $ pygor igor-infer -M models/Homo+sapiens/IGL/ -i data/IgL/IgL_seqs_naive_Nofunctional.txt -o new_IgL_naive
    --------------------------------
    ===== Running inference =====
    ...
    WARNING: write_model_parms path  [Errno 2] No such file or directory: ''
    Writing model parms in file  new_IgL_naive_parms.txt
    WARNING: IgorModel_Marginals.write_model_marginals path  [Errno 2] No such file or directory: ''
    Writing model marginals in file  new_IgL_naive_marginals.txt
    Database file :  new_IgL_naive
    

    This will output the following files

    new_IgL_naive.db
    new_IgL_naive_BN.pdf
    new_IgL_naive_PM.pdf
    new_IgL_naive_marginals.txt
    new_IgL_naive_parms.txt
    

    where new_hs_trb.db is a database with the encapsulated information about the new model and the date used by IGoR to infer it, new_IgL_naive_BN.pdf is a plot of the Bayesian network(BN) of inferred model, new_IgL_naive_PM.pdf are plots of the real marginals of events in BN, and finally the new_IgL_naive_parms.txt and new_IgL_naive_marginals.txt the inferred model in IGoR's format.

Model Plots

A model can be plotted from a database file, model directory or by passing the model_parms.txt and model_marginals.txt


$ pygor model-plot -M models/Homo+sapiens/IGL/ -o IgL_plot

or 

$ pygor model-plot -D new_IgL_naive.db -o IgL_plot

This will output two pdf files with the Marginal Probabilities and Conditional probabilities of events

Database files

The .db files can contain all the information in IGoR's standard files in a single sqilite database file, and can be examinated with any sqlite client, like sqlite3 or sqlibrowser

$ sqlite3 new_IgL_naive.db 
SQLite version 3.33.0 2020-08-14 13:23:32
Enter ".help" for usage hints.
sqlite> .tables
IgorDAlignments       IgorIndexedSeq        IgorMM_vj_ins       
IgorDGeneTemplate     IgorJAlignments       IgorMP_Edges        
IgorER_j_5_del        IgorJGeneCDR3Anchors  IgorMP_ErrorRate    
IgorER_j_choice       IgorJGeneTemplate     IgorMP_Event_list   
IgorER_v_3_del        IgorMM_j_5_del        IgorVAlignments     
IgorER_v_choice       IgorMM_j_choice       IgorVGeneCDR3Anchors
IgorER_vj_dinucl      IgorMM_v_3_del        IgorVGeneTemplate   
IgorER_vj_ins         IgorMM_v_choice     
IgorIndexedCDR3       IgorMM_vj_dinucl    

However, pygor has its own methods to maniputate data a database file. For instance, db-ls list the contents of the database and the number of records

$ pygor db-ls -D new_IgL_naive.db 
--------------------------------
=== Sequences tables igor-reads: 
IgorIndexedSeq  :  24985
=== Genomes References tables igor-genomes: 
IgorVGeneTemplate  :  151
IgorJGeneTemplate  :  10
IgorDGeneTemplate  :  0
IgorVGeneCDR3Anchors  :  111
IgorJGeneCDR3Anchors  :  10
=== Alignments tables igor-alignments: 
IgorIndexedCDR3  :  24985
IgorVAlignments  :  846743
IgorJAlignments  :  257400
IgorDAlignments  :  0
=== Model tables igor-model: 
IgorMP_Event_list  :  6
IgorMP_Edges  :  3
IgorMP_ErrorRate  :  1
IgorER_v_choice  :  151
IgorER_j_choice  :  10
IgorER_v_3_del  :  21
IgorER_j_5_del  :  21
IgorER_vj_ins  :  41
IgorER_vj_dinucl  :  4
IgorMM_v_choice  :  151
IgorMM_j_choice  :  1510
IgorMM_v_3_del  :  3171
IgorMM_j_5_del  :  210
IgorMM_vj_ins  :  41
IgorMM_vj_dinucl  :  16
=== Output tables igor-pgen and igor-scenarios: 

In a similar way the commands db-rm, db-cp, db-import and db-export can be used to manipulate database files.

$ pygor db-cp -D new_IgL_naive.db -o new_IgL_naive_mdl.db --igor-genomes --igor-model
--------------------------------
**** Tables in source database :  new_IgL_naive.db
=== Sequences tables igor-reads: 
IgorIndexedSeq  :  24985
=== Genomes References tables igor-genomes: 
IgorVGeneTemplate  :  151
IgorJGeneTemplate  :  10
IgorDGeneTemplate  :  0
IgorVGeneCDR3Anchors  :  111
IgorJGeneCDR3Anchors  :  10
=== Alignments tables igor-alignments: 
IgorIndexedCDR3  :  24985
IgorVAlignments  :  846743
IgorJAlignments  :  257400
IgorDAlignments  :  0
=== Model tables igor-model: 
IgorMP_Event_list  :  6
IgorMP_Edges  :  3
IgorMP_ErrorRate  :  1
IgorER_v_choice  :  151
IgorER_j_choice  :  10
IgorER_v_3_del  :  21
IgorER_j_5_del  :  21
IgorER_vj_ins  :  41
IgorER_vj_dinucl  :  4
IgorMM_v_choice  :  151
IgorMM_j_choice  :  1510
IgorMM_v_3_del  :  3171
IgorMM_j_5_del  :  210
IgorMM_vj_ins  :  41
IgorMM_vj_dinucl  :  16
=== Output tables igor-pgen and igor-scenarios: 
**** Tables in destiny database:  new_IgL_naive_mdl.db
=== Sequences tables igor-reads: 
=== Genomes References tables igor-genomes: 
IgorVGeneTemplate  :  151
IgorJGeneTemplate  :  10
IgorDGeneTemplate  :  0
IgorVGeneCDR3Anchors  :  111
IgorJGeneCDR3Anchors  :  10
=== Alignments tables igor-alignments: 
=== Model tables igor-model: 
IgorMP_Event_list  :  6
IgorMP_Edges  :  3
IgorMP_ErrorRate  :  1
IgorER_v_choice  :  151
IgorER_j_choice  :  10
IgorER_v_3_del  :  21
IgorER_j_5_del  :  21
IgorER_vj_ins  :  41
IgorER_vj_dinucl  :  4
IgorMM_v_choice  :  151
IgorMM_j_choice  :  1510
IgorMM_v_3_del  :  3171
IgorMM_j_5_del  :  210
IgorMM_vj_ins  :  41
IgorMM_vj_dinucl  :  16
=== Output tables igor-pgen and igor-scenarios: 

Model evaluation

Once we have an inferred model we can evaluate the probability of a particular sequence to be generated (pgen) and get the most probable scenarios for the recombination of input sequences or generate synthetic sequences. Please notice that in "new_IgL_naive_mdl.db" contains only the model and genomes information, which is necessary for the alignment and evaluation for IGoR.

$ pygor igor-evaluate -D new_IgL_naive_mdl.db -i data/IgL/IgL_seqs_naive_Functional_small.txt  -o IgL_naive_evaluated

An tsv airr standard format is created with the rearragement.

sequence_id	sequence	rev_comp	productive	v_call	d_call	j_call	sequence_alignment	germline_alignment	junction	junction_aa	v_cigar	d_cigar	j_cigar	v_score	v_identity	v_support	v_sequence_start	v_sequence_end	v_germline_start	v_germline_end	v_alignment_start	v_alignment_end	d_score	d_identity	d_support	d_sequence_start	d_sequence_end	d_germline_start	d_germline_end	d_alignment_start	d_alignment_end	j_score	j_identity	j_support	j_sequence_start	j_sequence_end	j_germline_start	j_germline_end	j_alignment_start	j_alignment_end	sequence_aa	vj_in_frame	stop_codon	complete_vdj	locus	sequence_alignment_aa	n1_length	np1	np1_aa	np1_length	n2_length	np2	np2_aa	np2_length	p3v_length	p5d_length	p3d_length	p5j_length	scenario_rank	scenario_proba_cond_seq	pgen	quality	quality_alignment
0	CAGTCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCATGCAACCCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCTCAACCAGACAAATCAGGGCTGCCCAGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATTCAGCGCACAGAGCAGCGGGACTCAGCCATGTATCGCTGTGCTAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTTGGCCCAGGCACCCGGCTGACAGTGCTCG	F		TRBV7-7*01	TRBD2*02	TRBJ2-3*01	GGTGCTGGAGTCTCCCAGTCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCATGCAACCCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCTCAACCAGACAAATCAGGGCTGCCCAGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATTCAGCGCACAGAGCAGCGGGACTCAGCCATGTATCGCTGTGCCAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTTGGCCCAGGCACCCGGCTGACAGTGCTCG		TGTGCTAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTT		285M	4M	45M	1425			2	285	16	283			20			290	292	10	13			225			7	50	6	50		6ATTCCT		6	4	CTGT		4	0	0	0	0	1	0.02729091.34834e-19		
0	CAGTCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCATGCAACCCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCTCAACCAGACAAATCAGGGCTGCCCAGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATTCAGCGCACAGAGCAGCGGGACTCAGCCATGTATCGCTGTGCTAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTTGGCCCAGGCACCCGGCTGACAGTGCTCG	F		TRBV7-7*01	TRBD2*01	TRBJ2-3*01	GGTGCTGGAGTCTCCCAGTCTCCCAGGTACAAAGTCACAAAGAGGGGACAGGATGTAACTCTCAGGTGTGATCCAATTTCGAGTCATGCAACCCTTTATTGGTATCAACAGGCCCTGGGGCAGGGCCCAGAGTTTCTGACTTACTTCAATTATGAAGCTCAACCAGACAAATCAGGGCTGCCCAGTGATCGGTTCTCTGCAGAGAGGCCTGAGGGATCCATCTCCACTCTGACGATTCAGCGCACAGAGCAGCGGGACTCAGCCATGTATCGCTGTGCCAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTTGGCCCAGGCACCCGGCTGACAGTGCTCG		TGTGCTAGCAGCATTCCTCGGGCTGTCAGATACGCAGTATTTT		285M	4M	45M	1425			2	285	16	283			20			290	292	10	13			225			7	50	6	50		6ATTCCT		6	4	CTGT		4	0	0	0	0	2	0.02729091.34834e-19		
...

Documentation

All the command line interface commands can be used in a python environment, like jupyter notebook, by exporting the pygor3 package

import pygor3 as p3
mdl = p3.IgorModel(model_parms_file="model_parms.txt", model_marginals_file="model_marginals.txt")

For further details checkout the documentation and notebooks directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

igorpy-0.0.5-py3-none-any.whl (7.1 MB view details)

Uploaded Python 3

File details

Details for the file igorpy-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: igorpy-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 7.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.10

File hashes

Hashes for igorpy-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2f998bd54c4def67165ed40d49aa51ac72d5eecd474e838d88096a52cda3a179
MD5 308fd4611accef6277bf6657462dbeec
BLAKE2b-256 4f1b0c29d1714918a22bc31f956adca81f70c3e7410c82fdc3bb722373943118

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page