Skip to main content

Jupyter extension for embedding the igv.js genome visualization in a notebook

Project description

igv Jupyter Extension

Binder

igv-jupyter is an extension for Jupyter Notebook which wraps igv.js. With this extension you can render igv.js in a cell and call its API from the notebook. The extension exposes a python API that mimics the igv.js Browser creation and control APIs. Dictionaries are used for browser and track configuration objects. Track data can be loaded from local or remote URLs, or supplied directly as lists of objects.

Installation

Requirements:

  • python >= 3.6.4
  • jupyterlab >= 3.0
pip install igv-jupyter

# To install to configuration in your home directory
jupyter serverextension enable --py igv
jupyter labextension enable --py igv
jupyter nbextension install --py igv
jupyter nbextension enable --py igv


# If using a virtual environment
jupyter serverextension enable --py igv --sys-prefix
jupyter labextension enable --py igv --sys-prefix
jupyter nbextension install --py igv --sys-prefix
jupyter nbextension enable --py igv --sys-prefix

Usage

Examples

Example notebooks are available in the github repository. To download without cloning the repository use this link. Notebooks are available in the "examples" directory.

Initialization

To insert an IGV instance into a cell:

(1) create an igv.Browser object,and (2) call showBrowser on the instance.

Example:

import igv

b = igv.Browser({"genome": "hg19"})

The igv.Browser initializer takes a configuration object which is converted to JSON and passed to the igv.js createBrowser function. The configuration object is described in the igv.js documentation.

To instantiate the client side IGV instance in a cell call show()

b.show()

Tracks

To load a track pass a track configuration object to load_track(). Track configuration objects are described in the igv.js documentation. The configuration object will be converted to JSON and passed to the igv.js browser instance.

Data for the track can be loaded by URL or passed directly as an array of JSON objects.

Remote URL

b.load_track(
    {
        "name": "Segmented CN",
        "url": "https://data.broadinstitute.org/igvdata/test/igv-web/segmented_data_080520.seg.gz",
        "format": "seg",
        "indexed": False
    })

Local File

b.load_track(
    {
        "name": "Local VCF",
        "url": "data/example.vcf",
        "format": "vcf",
        "type": "variant",
        "indexed": False
    })

Embedded Features

Features can also be passed directly to tracks.

b.load_track({
    "name": "Copy number",
    "type": "seg",
    "displayMode": "EXPANDED",
    "height": 100,
    "isLog": True,
    "features": [
        {
            "chr": "chr20",
            "start": 1233820,
            "end": 1235000,
            "value": 0.8239,
            "sample": "TCGA-OR-A5J2-01"
        },
        {
            "chr": "chr20",
            "start": 1234500,
            "end": 1235180,
            "value": -0.8391,
            "sample": "TCGA-OR-A5J3-01"
        }
    ]
})

Navigation

Zoom in by a factor of 2

b.zoom_in()

Zoom out by a factor of 2

b.zoom_out()

Jump to a specific locus

b.search('chr1:3000-4000')

Jump to a specific gene. This uses the IGV search web service, which currently supports a limited number of genomes: hg38, hg19, and mm10. To configure a custom search service see the igv.js documentation

b.search('myc')

SVG output

Saving the current IGV view as an SVG image requires two calls.

b.get_svg()

b.display_svg()

Events

Note: This is an experimental feature.

def locuschange(data):
    b.locus = data

    b.on("locuschange", locuschange)

    b.zoom_in()

    return b.locus

Development

To build and install from source:

python setup.py build
pip install -e .
jupyter labextension develop . --overwrite
jupyter nbextension install --py igv --symlink
jupyter nbextension enable --py igv

After source changes, the extension can be rebuilt using:

jupyter labextension build .

Creating a conda environment

conda create -n test python=3.7.1
conda activate test
conda install pip
conda install jupyter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

igv-jupyter-0.10.3.tar.gz (3.3 MB view details)

Uploaded Source

Built Distribution

igv_jupyter-0.10.3-py3-none-any.whl (7.8 MB view details)

Uploaded Python 3

File details

Details for the file igv-jupyter-0.10.3.tar.gz.

File metadata

  • Download URL: igv-jupyter-0.10.3.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.26.0 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for igv-jupyter-0.10.3.tar.gz
Algorithm Hash digest
SHA256 3a977cf3e182ebf5bb6eda2b892c324af47dc400548d4eb8296ecefca7c8740f
MD5 df1f28b5bec86caa7aa90a6810b59ab8
BLAKE2b-256 ae2bb1ac690c8e16283decfdc6f2c8e433c0a9d7cfcfd1054fb4117245cad4f0

See more details on using hashes here.

File details

Details for the file igv_jupyter-0.10.3-py3-none-any.whl.

File metadata

  • Download URL: igv_jupyter-0.10.3-py3-none-any.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.26.0 setuptools/49.6.0.post20210108 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for igv_jupyter-0.10.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f8352283bb695a70893090aadac6fcff23c677257c8f1ec754e308538357146f
MD5 f1e89097918a241a610a34509bf3de3d
BLAKE2b-256 3b37238c54c314068aea1b26b40b5edf3abe8ed093b901df74e4abf32e994660

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page