Skip to main content

Jupyter extension for embedding the igv.js genome visualization in a notebook

Reason this release was yanked:

Bad upload

Project description

igv Jupyter Extension

Binder

igv-jupyter is an extension for Jupyter Notebook which wraps igv.js. With this extension you can render igv.js in a cell and call its API from the notebook. The extension exposes a python API that mimics the igv.js Browser creation and control APIs. Dictionaries are used for browser and track configuration objects. Track data can be loaded from local or remote URLs, or supplied directly as lists of objects.

Note: This project supports classic Jupyter Notebook and JupyterLab 3.x. For a JupyterLab 1.x- or 2.x-enabled extension see https://github.com/epi2me-labs/igv-jupyterlab.

Installation

Requirements:

  • python >= 3.6.4
  • jupyterlab >= 3.0
pip install igv-jupyter

# To install to configuration in your home directory
jupyter serverextension enable --py igv
jupyter labextension enable --py igv
jupyter nbextension install --py igv
jupyter nbextension enable --py igv


# If using a virtual environment
jupyter serverextension enable --py igv --sys-prefix
jupyter labextension enable --py igv --sys-prefix
jupyter nbextension install --py igv --sys-prefix
jupyter nbextension enable --py igv --sys-prefix

Usage

Examples

Example notebooks are available in the github repository. To download without cloning the repository use this link. Notebooks are available in the "examples" directory.

Initialization

To insert an IGV instance into a cell:

(1) create an igv.Browser object,and (2) call showBrowser on the instance.

Example:

import igv

b = igv.Browser({"genome": "hg19"})

The igv.Browser initializer takes a configuration object which is converted to JSON and passed to the igv.js createBrowser function. The configuration object is described in the igv.js documentation.

To instantiate the client side IGV instance in a cell call show()

b.show()

Tracks

To load a track pass a track configuration object to load_track(). Track configuration objects are described in the igv.js documentation. The configuration object will be converted to JSON and passed to the igv.js browser instance.

Data for the track can be loaded by URL or passed directly as an array of JSON objects.

Remote URL

b.load_track(
    {
        "name": "Segmented CN",
        "url": "https://data.broadinstitute.org/igvdata/test/igv-web/segmented_data_080520.seg.gz",
        "format": "seg",
        "indexed": False
    })

Local File

Tracks can be loaded from local files using the Jupyter web server by prepending "files" to the path. The path is relative to the notebook file.

b.load_track(
    {
        "name": "Local VCF",
        "url": "files/data/example.vcf",
        "format": "vcf",
        "type": "variant",
        "indexed": False
    })

Embedded Features

Features can also be passed directly to tracks.

b.load_track({
    "name": "Copy number",
    "type": "seg",
    "displayMode": "EXPANDED",
    "height": 100,
    "isLog": True,
    "features": [
        {
            "chr": "chr20",
            "start": 1233820,
            "end": 1235000,
            "value": 0.8239,
            "sample": "TCGA-OR-A5J2-01"
        },
        {
            "chr": "chr20",
            "start": 1234500,
            "end": 1235180,
            "value": -0.8391,
            "sample": "TCGA-OR-A5J3-01"
        }
    ]
})

Navigation

Zoom in by a factor of 2

b.zoom_in()

Zoom out by a factor of 2

b.zoom_out()

Jump to a specific locus

b.search('chr1:3000-4000')

Jump to a specific gene. This uses the IGV search web service, which currently supports a limited number of genomes: hg38, hg19, and mm10. To configure a custom search service see the igv.js documentation

b.search('myc')

SVG output

Saving the current IGV view as an SVG image requires two calls.

b.get_svg()

b.display_svg()

Events

Note: This is an experimental feature.

def locuschange(data):
    b.locus = data

    b.on("locuschange", locuschange)

    b.zoom_in()

    return b.locus

Development

To build and install from source:

python setup.py build
pip install -e .
jupyter labextension develop . --overwrite
jupyter nbextension install --py igv --symlink
jupyter nbextension enable --py igv

Creating a conda environment

conda create -n test python=3.7.1
conda activate test
conda install pip
conda install jupyter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

igv-0.10.0.tar.gz (566.0 kB view details)

Uploaded Source

Built Distribution

igv-0.10.0-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file igv-0.10.0.tar.gz.

File metadata

  • Download URL: igv-0.10.0.tar.gz
  • Upload date:
  • Size: 566.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for igv-0.10.0.tar.gz
Algorithm Hash digest
SHA256 6d198b85c878e7e6d21cdf63daa8e9dcc026cd02563da4f7a150c0e76be61507
MD5 16e93d9a0d31a4a94133e26e3e257056
BLAKE2b-256 7e7dcf0a4e5ae63e366d76619da23d697089974a7043b376a0684e1249454ebb

See more details on using hashes here.

File details

Details for the file igv-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: igv-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.5

File hashes

Hashes for igv-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 996c733b225f196c870f7fa1c719808d52256757f2a935f48f8e5d810e66a8b4
MD5 cc6562246504b9ee8607aa70ab77f437
BLAKE2b-256 2a2dfd156c43bbd5a8e9807fe0962413d56ee177b9c0b9499417a90749e6a6fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page