Skip to main content

iinfer: An application that executes AI model files in onnx or mmlab format.

Project description

iinfer (Image Inference Application)

  • onnx又はmmlabフォーマットのAIモデルファイルを実行するアプリケーションです。
  • ドキュメントはこちら
  • iinferを使用することで、AIモデルを簡単に実行することが出来ます。
  • 動作確認したモデルは動作確認済みモデルに記載しています。
  • 主なAIタスクは、画像分類、物体検知、顔検知、顔認識です。
  • 複数の iinfer コマンドの入出力をつなげる、パイプライン処理を行うことが出来ます。
  • GUIモードを使用することで、 iinfer コマンド操作を簡単に行うことが出来ます。

iinferの動作イメージ

iinferの動作イメージ

  1. iinfer clientimageファイルcamera から画像を取得し、 推論結果 predict.json を出力します。
  2. iinfer server は推論を行うサーバーです。 iinfer client からの要求に応えて、推論結果を iinfer client に返します。
  3. iinfer server は予め ai model をロードしておくことで、推論を高速化します。
  4. iinfer clientiinfer serverRedis 経由で通信します。
  5. iinfer serverRedisdockerコンテナ を使用して起動させることが出来ます。

インストール方法

インストール方法は こちら を参照してください。

iinferの使用方法

iinferを使用するには、次のコマンドを実行します:

  1. guiモードで利用する場合:

guiモードのイメージ

iinfer -m gui -c start
  1. コマンドモードで利用する場合

    1. AIモデルのデプロイ:
    # 画像AIモデルのデプロイ
    # 推論タイプはモデルのAIタスクやアルゴリズムに合わせて指定する。指定可能なキーワードは"iinfer -m client -c predict_type_list"コマンド参照。
    iinfer -m client -c deploy -n <任意のモデル名> -f \
                               --model_file <モデルファイル> \
                               --model_conf_file <モデル設定ファイル> \
                               --predict_type <推論タイプ> \
                               --label_file <ラベルファイル>
    
    # デプロイされている画像AIモデルの一覧
    iinfer -m client -c deploy_list -f
    
    1. AIモデルのセッションを開始:
    # 画像AIモデルを起動させて推論可能な状態に(セッションを確保)する
    # use_trackを指定するとObjectDetectionタスクの結果に対して、MOT(Multi Object Tracking)を実行しトラッキングIDを出力する。
    iinfer -m client -c start -n <モデル名> -f \
                              --use_track
    
    1. 推論を実行:
    # 推論を実行する
    # output_previewを指定するとimshowで推論結果画像を表示する(GUI必要)
    iinfer -m client -c predict -n <モデル名> -f \
                                -i <推論させる画像ファイル> \
                                -o <推論結果の画像ファイル> \
                                --output_preview
    
    # カメラキャプチャー画像を元に推論を実行し、クラススコアが0.8以上の物体のみを検出する
    # --stdin --image_type capture で標準入力のキャプチャー画像を推論する
    iinfer -m client -c capture | \
    iinfer -m client -c predict -n <モデル名> \
                                --stdin \
                                --image_type capture \
                                --nodraw | \
    iinfer -m postprocess -c det_filter -f -P \
                                --stdin \
                                --score_th 0.8
    
    1. AIモデルのセッションを開放:
    # 画像AIモデルを停止させてセッションを開放
    iinfer -m client -c stop -n <モデル名> -f
    

Lisence

This project is licensed under the MIT License, see the LICENSE file for details

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iinfer-0.6.3.tar.gz (460.2 kB view details)

Uploaded Source

Built Distribution

iinfer-0.6.3-py3-none-any.whl (821.6 kB view details)

Uploaded Python 3

File details

Details for the file iinfer-0.6.3.tar.gz.

File metadata

  • Download URL: iinfer-0.6.3.tar.gz
  • Upload date:
  • Size: 460.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for iinfer-0.6.3.tar.gz
Algorithm Hash digest
SHA256 707182996dd23731b73db50957fada29353c2dd5fb69aedd6da76e621ab3f551
MD5 9a5dc61bb933f7768d8a0a74d4c28aea
BLAKE2b-256 f92251ca0609903d2d7c7c048b670c5df0d3426fd885540e16bbca086ae862ea

See more details on using hashes here.

File details

Details for the file iinfer-0.6.3-py3-none-any.whl.

File metadata

  • Download URL: iinfer-0.6.3-py3-none-any.whl
  • Upload date:
  • Size: 821.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for iinfer-0.6.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1e1752a4060862afedd4282b2460803c8c9bb2d892dd96e7c9a755f0b37897f6
MD5 033cae92775040a92e503c6838acfb7a
BLAKE2b-256 214faf3cbe93cf04f927b17598dc7dc214382a6fc88f347137e8750d317239f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page