Skip to main content

streamlit components for image annotation

Project description

Streamlit Image Annotation

Streamlit component for image annotation.

Streamlit App PyPI

Features

  • You can easily launch an image annotation tool using streamlit.
  • By customizing the pre- and post-processing, you can achieve your preferred annotation workflow.
  • Currently supports classification, detection, point detection tasks.
  • Simple UI that is easy to navigate.

Install

pip install streamlit-image-annotation

Example Usage

If you want to see other use cases, please check inside the examples folder.

from glob import glob
import pandas as pd
import streamlit as st
from streamlit_image_annotation import classification

label_list = ['deer', 'human', 'dog', 'penguin', 'framingo', 'teddy bear']
image_path_list = glob('image/*.jpg')
if 'result_df' not in st.session_state:
    st.session_state['result_df'] = pd.DataFrame.from_dict({'image': image_path_list, 'label': [0]*len(image_path_list)}).copy()

num_page = st.slider('page', 0, len(image_path_list)-1, 0)
label = classification(image_path_list[num_page], 
                        label_list=label_list, 
                        default_label_index=int(st.session_state['result_df'].loc[num_page, 'label']))

if label is not None and label['label'] != st.session_state['result_df'].loc[num_page, 'label']:
    st.session_state['result_df'].loc[num_page, 'label'] = label_list.index(label['label'])
st.table(st.session_state['result_df'])

API

classification(
    image_path: str,
    label_list: List[str],
    default_label_index: Optional[int] = None,
    height: int = 512,
    width: int = 512,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • default_label_index: Initial label index.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: {'label': label_name}

Example: example code

detection(
    image_path: str,
    label_list: List[str],
    bboxes: Optional[List[List[int, int, int, int]]] = None,
    labels: Optional[List[int]] = None,
    height: int = 512,
    width: int = 512,
    line_width: int = 5,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • bboxes: Initial list of bounding boxes, where each bbox is in the format [x, y, w, h].

  • labels: List of label for each initial bbox.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • line_width: The stroke width of the bbox.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: [{'bbox':[x,y,width, height], 'label_id': label_id, 'label': label_name},...]

Example: example code

pointdet(
    image_path: str,
    label_list: List[str],
    points: Optional[List[List[int, int]]] = None,
    labels: Optional[List[int]] = None,
    height: int = 512,
    width: int = 512,
    point_width: int =3,
    key: Optional[str] = None
)
  • image_path: Image path.

  • label_list: List of label candidates.

  • points: Initial list of points, where each point is in the format [x, y].

  • labels: List of label for each initial bbox.

  • height: The maximum height of the displayed image.

  • width: The maximum width of the displayed image.

  • point_width: The stroke width of the bbox.

  • key: An optional string to use as the unique key for the widget. Assign a key so the component is not remount every time the script is rerun.

  • Component Value: [{'bbox':[x,y], 'label_id': label_id, 'label': label_name},...]

Example: example code

Future Work

  • Addition of component for segmentation task.

Development

setup

cd Streamlit-Image-Annotation/
export PYTHONPATH=$PWD

and set IS_RELEASE = False in Streamlit-Image-Annotation/__init__.py.

start frontend

git clone https://github.com/hirune924/Streamlit-Image-Annotation.git
cd Streamlit-Image-Annotation/streamlit_image_annotation/Detection
yarn
yarn start

start streamlit

cd Streamlit-Image-Annotation/
streamlit run streamlit_image_annotation/Detection/__init__.py

build

cd Streamlit-Image-Annotation/Classification/frontend
yarn build
cd Streamlit-Image-Annotation/Detection/frontend
yarn build
cd Streamlit-Image-Annotation/Point/frontend
yarn build

and set IS_RELEASE = True in Streamlit-Image-Annotation/__init__.py.

make wheel

python setup.py sdist bdist_wheel

upload

python3 -m twine upload --repository testpypi dist/*
python -m pip install --index-url https://test.pypi.org/simple/ --no-deps streamlit-image-annotation
twine upload dist/*

image-annotation-streamlit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file image_annotation_streamlit-0.3.4-py3-none-any.whl.

File metadata

File hashes

Hashes for image_annotation_streamlit-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0a3db897077b598e6aa331a877b59f1ba340e295eed48053ed07831546294c1e
MD5 f86f7e9606287342b01980f12afe08c5
BLAKE2b-256 7c25e2bdb161b1de4b6187d7ecc6c58798fe54c2a60ee12c7a2ac1d776d24b47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page