Image classification with pretrained models in Pytorch
Project description
# Image classification with pretrained models in Pytorch
Use pretrained models to train your data.
## Installation
`sh pip install image-classification-pytorch `
## ✨ Quick start
`sh import image_classification_pytorch as icp ` `sh # Images of each class in its own folder with the class name. # Examples of folders: homer_simpson, bart_simpson etc. from google.colab import drive drive.mount('/content/gdrive') !unzip -q /content/gdrive/My\ Drive/datasets/image_classification_pytorch/data_simpsons.zip -d train ` `sh # add model tf_efficientnet_b4_ns = {'model_type': 'tf_efficientnet_b4_ns', 'im_size': 380, 'im_size_test': 380, 'batch_size': 8, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]} models = [tf_efficientnet_b4_ns] ` `sh # create trainer trainer = ICPTrainer(models=models, data_dir='data_simpsons') # start training trainer.fit_test() `
## Colab Quick start [image_classification_pytorch_get_started.ipynb](https://colab.research.google.com/drive/1M7oJDizCOrFTDJz0CaDy-ClvDMUvmlnv?usp=sharing)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file image_classification_pytorch-0.0.10.tar.gz
.
File metadata
- Download URL: image_classification_pytorch-0.0.10.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73696029a2ce571802d98266b838a342c1ed4d3ef4bfd2d806fbb8792b2b52f3 |
|
MD5 | df98e71cbc48584e0ba2bacecf293e00 |
|
BLAKE2b-256 | d0c3b3658457a52decf909e86359b8e1e63833f663780d412f519cb4d8d6090f |