Skip to main content

A library for processing images and saving layers as PSD

Project description

Image to PSD

A Python library for processing images and saving layers as PSD files.

Prerequisites

Make sure you have ImageMagick installed. You can install it using the following commands:

On Ubuntu/Debian:

sudo apt-get update
sudo apt-get install imagemagick

On macOS:

You can install ImageMagick using Homebrew:

brew install imagemagick

On Windows:

Download and install ImageMagick from the official website.

Installation

You can install the library using pip:

pip install image_to_psd

Usage

Here is a basic example of how to use the library:

from image_to_psd.processor import process_image

image_url = "https://example.com/image.jpg"
result = process_image(image_url, method_type=1, bandwidth=10, is_dynamic=1, num_colors=50)

Saving Individual Layers

You can also save the individual layers as separate PNG files by setting the save_layers parameter to True:

from image_to_psd.processor import process_image

image_url = "https://example.com/image.jpg"
result = process_image(image_url, method_type=1, bandwidth=10, is_dynamic=1, num_colors=50, save_layers=True)

Using a Local File

If you want to process a local image file, you can provide the file path instead of a URL:

from image_to_psd.processor import process_image

image_path = "/path/to/your/local/image.jpg"
result = process_image(image_path, method_type=1, bandwidth=10, is_dynamic=1, num_colors=50, save_layers=True)

Configuration

The process_image function takes the following parameters:

  • image_path (str): URL or local path to the image file.
  • method_type (int): Method type for processing (0 for default, 1 for custom).
  • bandwidth (int): Bandwidth parameter for MeanShift clustering (used if method_type is 1).
  • is_dynamic (int): Flag to use dynamic color extraction (1 for dynamic, 0 for predefined).
  • num_colors (int): Number of dominant colors to extract (used if is_dynamic is 1).
  • save_layers (bool): Flag to save individual layers as separate PNG files (default is False).

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

image_to_psd-1.1.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

image_to_psd-1.1.0-py3-none-any.whl (7.4 kB view details)

Uploaded Python 3

File details

Details for the file image_to_psd-1.1.0.tar.gz.

File metadata

  • Download URL: image_to_psd-1.1.0.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for image_to_psd-1.1.0.tar.gz
Algorithm Hash digest
SHA256 7d560380e3de9f4155b3770239e95d4444ff4dce5c64ce6dbb509cf6722418d6
MD5 9a16ff2da33b6e5b655629e615abf35a
BLAKE2b-256 16e3f605bb086d2c25d7317ed1bdc545282c8c554f3e9e674a19ac5c903a6c36

See more details on using hashes here.

File details

Details for the file image_to_psd-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for image_to_psd-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8717482b04d9ed9db9a63e47860a429e34db9735133ab830a48d4092ea79199f
MD5 7045704cf65d531add02dbd2dace6a5d
BLAKE2b-256 a16820917e53c4a9a24ac67d4df57cd7dbd9fc427076ceaad1285060619e9154

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page