Skip to main content

Read/write medical image data

Project description

Documentation Status Build Status Coverage PyPI Version

Imagedata is a python library to read and write medical image data into numpy arrays. Imagedata will handle multi-dimensional data. In particular, imagedata will read and sort DICOM 3D and 4D series based on defined tags. Imagedata will handle geometry information between the formats.

The following formats are included:

  • DICOM

  • Nifti

  • ITK (MetaIO)

  • Matlab

  • PostScript (input only)

Other formats can be added through a plugin architecture.

Install

pip install imagedata

Documentation

See the Documentation page for info.

Example code

A simple example reading two time series from dirA and dirB, and writing their mean to dirMean:

from imagedata.series import Series
a = Series('dirA', 'time')
b = Series('dirB', 'time')
assert a.shape == b.shape, "Shape of a and b differ"
# Notice how a and b are treated as numpy arrays
c = (a + b) / 2
c.write('dirMean')

Sorting

Sorting of DICOM slices is considered a major task. Imagedata will sort slices into volumes based on slice location. Volumes may be sorted on a number of DICOM tags:

  • ‘time’: Dynamic time series, sorted on acquisition time

  • ‘b’: Diffusion weighted series, sorted on diffusion b value

  • ‘fa’: Flip angle series, sorted on flip angle

  • ‘te’: Sort on echo time TE

In addition, volumes can be sorted on user defined tags.

Non-DICOM formats usually don’t specify the labelling of the 4D data. In this case, you can specify the sorting manually.

Viewing

A simple viewer. Scroll through the image stack, step through the tags of a 4D dataset. These operations are possible:

  • Read-out voxel value: Move mouse over.

  • Window/level adjustment: Move mouse with left key pressed.

  • Scroll through slices of an image stack: Mouse scroll wheel, or up/down array keys.

  • Step through tags (time, b-values, etc.): Left/right array keys.

  • Move through series when many series are displayed: PageUp/PageDown keys.

# View a Series instance
a.show()

# View both a and b Series
a.show(b)

# View several Series
a.show([b, c, d])

Converting data from DICOM and back

In many situations you need to process patient data using a tool that do not accept DICOM data. In order to maintain the coupling to patient data, you may convert your data to e.g. Nifti and back.

Example using the command line utility image_data:

image_data --of nifti niftiDir dicomDir
# Now do your processing on Nifti data in niftiDir/, leaving the result in niftiResult/.

# Convert the niftiResult back to DICOM, using dicomDir as a template
image_data --of dicom --template dicomDir dicomResult niftiResult
# The resulting dicomResult will be a new DICOM series that could be added to a PACS

# Set series number and series description before transmitting to PACS using DICOM transport
image_data --sernum 1004 --serdes 'Processed data' \
  dicom://server:104/AETITLE dicomResult

The same example using python code:

from imagedata.series import Series
a = Series('dicomDir')
a.write('niftiDir', formats=['nifti'])   # Explicitly select nifti as output format

# Now do your processing on Nifti data in niftiDir/, leaving the result in niftiResult/.

b = Series('niftiResult', template=a)    # Or template='dicomDir'
b.write('dicomResult')   # Here, DICOM is default output format

# Set series number and series description before transmitting to PACS using DICOM transport
b.seriesNumber = 1004
b.seriesDescription = 'Processed data'
b.write(' dicom://server:104/AETITLE')

Series fields

The Series object is inherited from numpy.ndarray, adding a number of useful fields:

Axes

a.axes defines the unit and size of each dimension of the matrix

Addressing

4D: a[tags, slices, rows, columns]

3D: a[slices, rows, columns]

2D: a[rows, columns]

RGB: a[…, rgb]

patientID, patientName, patientBirthDate

Identifies patient

accessionNumber

Identifies study

seriesNumber, seriesDescription, imageType

Labels DICOM data

slices

Returns number of slices

spacing

Returns spacing for each dimension. Units depend on dimension, and could e.g. be mm or sec.

tags

Returns tags for each slice

timeline

Returns time steps for when a time series

transformationMatrix

The transformation matrix to calculate physical coordinates from pixel coordinates

Series instancing

From image data file(s):

a = Series('in_dir')

From a list of directories:

a = Series(['1', '2', '3'])

From a numpy array:

e = np.eye(128)
a = Series(e)

Series methods

write()

Write the image data as a Matlab file to out_dir:

a.write('out_dir', formats=['mat'])
slicing

The image data array can be sliced like numpy.ndarray. The axes will be adjusted accordingly. This will give a 3D b image when a is 4D.

b = a[0, ...]

Archives

The Series object can access image data in a number of archives. Some archives are:

Filesystem

Access files in directories on the local file system.

a = Series('in_dir')
Zip

Access files inside zip files.

# Read all files inside file.zip:
a = Series('file.zip')

# Read named directory inside file.zip:
b = Series('file.zip?dir_a')

# Write the image data to DICOM files inside newfile.zip:
b.write('newfile.zip', formats=['dicom'])

Transports

file

Access local files (default):

a = Series('file:in_dir')
dicom

Access files using DICOM Storage protocols. Currently, writing (implies sending) DICOM images only:

a.write('dicom://server:104/AETITLE')

Command line usage

The command line program image_data can be used to convert between various image data formats:

image_data --order time out_dir in_dirs

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imagedata-1.4.0rc4.tar.gz (6.5 MB view details)

Uploaded Source

Built Distribution

imagedata-1.4.0rc4-py3-none-any.whl (118.6 kB view details)

Uploaded Python 3

File details

Details for the file imagedata-1.4.0rc4.tar.gz.

File metadata

  • Download URL: imagedata-1.4.0rc4.tar.gz
  • Upload date:
  • Size: 6.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/58.5.2 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for imagedata-1.4.0rc4.tar.gz
Algorithm Hash digest
SHA256 43dc30903d6c5633f019c24ef273313bccbdb092572f2cc660a8754a2d8cdf25
MD5 95292f1f60226f930d9cccaf644f7089
BLAKE2b-256 de74c52b970e9a81a1c1b1ae78f1d37bb544fe4dd0676e1c4131fcfb0266eca1

See more details on using hashes here.

File details

Details for the file imagedata-1.4.0rc4-py3-none-any.whl.

File metadata

  • Download URL: imagedata-1.4.0rc4-py3-none-any.whl
  • Upload date:
  • Size: 118.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/58.5.2 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.10

File hashes

Hashes for imagedata-1.4.0rc4-py3-none-any.whl
Algorithm Hash digest
SHA256 1479e1f5b39e589bc478a44f972b0c94e24dc26aa2cdb8d4da17b89f470f0379
MD5 7f75cb424f71e52818a9ee21d743877c
BLAKE2b-256 443ac2ba6f9cdd89a5b54adb566dc116de0275817ece8a4484d9f208fded7711

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page