Skip to main content

Package for image deduplication

Project description

imagededup is a python package that provides functionality to find duplicates in a collection of images using a variety of algorithms. Additionally, an evaluation and experimentation framework, is also provided. Following details the functionality provided by the package:

  • Finding duplicates in a directory using one of the following algorithms:
    • Convolutional Neural Network

    • Perceptual hashing

    • Difference hashing

    • Wavelet hashing

    • Average hashing

  • Generation of features for images using one of the above stated algorithms.

  • Framework to evaluate effectiveness of deduplication given a ground truth mapping.

  • Plotting duplicates found for a given image file.

Read the documentation at: https://idealo.github.io/imagededup/

imagededup is compatible with Python 3.8+ and runs on Linux, MacOS X and Windows. It is distributed under the Apache 2.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

imagededup-0.3.2-cp310-cp310-win_amd64.whl (53.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

imagededup-0.3.2-cp310-cp310-win32.whl (51.8 kB view details)

Uploaded CPython 3.10 Windows x86

imagededup-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (176.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imagededup-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl (51.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imagededup-0.3.2-cp39-cp39-win_amd64.whl (53.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

imagededup-0.3.2-cp39-cp39-win32.whl (51.8 kB view details)

Uploaded CPython 3.9 Windows x86

imagededup-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imagededup-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl (51.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imagededup-0.3.2-cp38-cp38-win_amd64.whl (53.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

imagededup-0.3.2-cp38-cp38-win32.whl (51.8 kB view details)

Uploaded CPython 3.8 Windows x86

imagededup-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (174.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imagededup-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl (51.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file imagededup-0.3.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5eede99e823d0479d44f2e469ee2740953784598eafb21c750cfa10d6c4f5c18
MD5 8e77857762298078f21cbd7e82fccdf5
BLAKE2b-256 8c51ad0f5322582be4ec08f2d8dcea609d0c0e89de79df4cca0efa6be4195a15

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: imagededup-0.3.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for imagededup-0.3.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ab721bb0412dd3211126a270d77994fabd8497b9333ec8ac388ddead4ff407d0
MD5 18bf5122ae554bccdda1f10ccace3faa
BLAKE2b-256 47598c0ea553b105d4258838c550bc23450eb158818cbfa2fa54e1828842dd4c

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 634c2bf9531eda463741afa3132540f7dc88112a43cf689bb54cb82430f16b6f
MD5 4abb5329bb6fc255c879cf3a01b9a255
BLAKE2b-256 5c4074392fd176277ecb3e6fe415d19b0f1198e9592d8d27801f44383bb0238c

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b227297b81a751e8a02586757111722b56c92c04229d650f42ec4c38a8422ba
MD5 4e59e74a40fcc23959ea5076d9fe741c
BLAKE2b-256 b87b39324858a3762db75ecd925b810ea9986f1973008a40d71520422e78702f

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imagededup-0.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 53.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for imagededup-0.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a340df056e2fcbd32fd1b1279ad309274aa4861b5c2c19392fa82fccc20dbfda
MD5 6f871ae77ac7ff529ff6a7a5664dae62
BLAKE2b-256 4afe3838e96e4b7804fead6de968950abfe9dd735ddc598464ec002065281945

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: imagededup-0.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for imagededup-0.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4ab427182b1b4349189bcc9b8d3f0e1bbc0165e173e5826a8aa2fd26f57c7e21
MD5 b07367608882d4ad14063b83886332c9
BLAKE2b-256 8ccdb07e3684b239fbbbe80ec169fb994b8f1119066d829b81d0af6fe94c603b

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e3245e7751ce9204c518fa5345ff74e9265588ba19c90771764083a5a13a241
MD5 829fb68a232333ebd4cadb669c8cea5d
BLAKE2b-256 f891ddf80ca2c59f9c048d68b02edbba7af0034e60a72a28ebffd1000c52385d

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 009d6337bb1cb2a20b8d87c1351afe70c27ab4c161cf27b2ca6f942c19f60e12
MD5 7496b6706c8867eaf721c1a2eb6c4be9
BLAKE2b-256 90786ac3057efed793827ce653a3614ed148af9d6742bc24369ee6a6928f4092

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imagededup-0.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 53.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for imagededup-0.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cea7fc662922be30081746763afb070819830a80fed517ba5b6da8cc426510f9
MD5 65eab1a957b43f6e20559543b03081f8
BLAKE2b-256 bf207994e8e37265347c49d522a1fdff9768e92909d8d075b91b6c354934ea0b

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: imagededup-0.3.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for imagededup-0.3.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 931f9fcd686d6aa4ad2cd5591e401c132ffed2677bcc00f5b5978d8cd57304c9
MD5 1c8fd568f5bdbfb84ce5ae0b1c21857f
BLAKE2b-256 09d1a0a6f361b4e1205401b70c62d107787f2324101d89e5bef3f06741f66e4c

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1303a44bc0265f6f0a3924534c02b2df0da7a240f7f94edab3ba0e97ab4c483d
MD5 51bfecfda02d9a29f732fae13a5200e0
BLAKE2b-256 a7f143b44c3b1239119450892d3b32abe275e1bdfa958c1f8cc3083ebffd2d3e

See more details on using hashes here.

File details

Details for the file imagededup-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imagededup-0.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c382f513c04c44b8a8b41dd2bf1e27066aa76f585947eb71cd7a11902324c707
MD5 68b60ddbb0d3632fa2e76f5c38bba2f4
BLAKE2b-256 8e1e6e530d784642fc147d380c34bc0d1eac502f671081e5b4a785fe45450c6a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page