Imagenet factors of variation annotations
Project description
ImagenetX : Understanding model mistakes with factors of variation annotations
Code to load annotations, evaluate models and reproduce paper plots. See [paper], [website], [colab]
Installation
If you just want to load the annotations :
pip install imagenet-x
Other installations:
- Install from repo clone :
pip install -e .
- Reproduce plots from the paper and use dataset loader:
pip install 'imagenet-x[all]'
Usage
To load the annotations
from imagenet_x import load_annotations
annotations = load_annotations()
This will output the following table
file_name | class | multiple_objects | background | color | brighter | darker | style | larger | smaller | object_blocking | person_blocking | partial_view | pattern | pose | shape | subcategory | texture | justification | one_word | metaclass |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ILSVRC2012_val_00004487.JPEG | 762 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | close up of a pan fried sea bass. | sea bass close up | structure |
ILSVRC2012_val_00003963.JPEG | 292 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | sepia image of tiger | digitally altered | other |
ILSVRC2012_val_00041992.JPEG | 718 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | the bridge is brown | rare view | device |
ILSVRC2012_val_00028056.JPEG | 635 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | the magnetic compass is on the bronze container | wood shape | device |
See this notebook for some sample images and annotations
One can also directly download the raw annotation files stored in the annotations
folder.
There are 4 json line files imagenet_x_[train|val]_[multi|top]_factor.jsonl
that have entries such as the following:
{"file_name":"ILSVRC2012_val_00004487.JPEG","class":762,"multiple_objects":0,"background":1,"color":0,"brighter":0,"darker":0,"style":0,"larger":1,"smaller":0,"object_blocking":0,"person_blocking":0,"partial_view":0,"pattern":0,"pose":1,"shape":0,"subcategory":0,"texture":0,"justification":"close up of a pan fried sea bass. ","one_word":"sea bass close up"}
To generate plots for a new model
Generate the predictions of your model on the Imagenet Validation set in a csv file with 3 columns
file_name | predicted_class | predicted_probability |
---|---|---|
ILSVRC2012_val_00000293.JPEG | 0 | 0.634764 |
ILSVRC2012_val_00002138.JPEG | 391 | 0.360206 |
ILSVRC2012_val_00003014.JPEG | 0 | 0.951837 |
ILSVRC2012_val_00006697.JPEG | 0 | 0.999731 |
ILSVRC2012_val_00007197.JPEG | 0 | 0.998473 |
Then store the list of model CSVs in a directory "path/to/model/predictions"
from imagenet_x import get_factor_accuracies, error_ratio
factor_accs = get_factor_accuracies("path/to/model/predictions")
error_ratios = error_ratio(factor_accs)
This gives the following table
Error ratios
model | pose | background | pattern | color | smaller | shape | partial_view | subcategory | texture | larger | darker | object_blocking | person_blocking | style | brighter | multiple_objects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DINO | 0.726197 | 1.06799 | 0.927478 | 1.1779 | 1.54369 | 1.64228 | 1.12906 | 1.95486 | 2.15032 | 1.24805 | 1.46777 | 1.93051 | 2.03486 | 1.70361 | 0.924938 | 1.4244 |
ResNet50 | 0.694739 | 1.1417 | 0.771442 | 1.18883 | 1.49743 | 1.74423 | 1.13236 | 2.10548 | 2.39386 | 1.31592 | 1.71502 | 1.92327 | 2.17128 | 1.92798 | 1.16639 | 1.97389 |
SimCLR | 0.774029 | 1.0867 | 0.911171 | 1.11955 | 1.54176 | 1.47304 | 1.01247 | 1.61814 | 2.0584 | 1.0121 | 1.12238 | 1.75552 | 2.03412 | 1.17686 | 0.879497 | 1.1907 |
ViT | 0.74067 | 1.09097 | 0.862456 | 1.15164 | 1.64401 | 1.53992 | 0.917235 | 2.01538 | 2.04465 | 1.29087 | 1.83403 | 1.98596 | 1.93631 | 1.60108 | 0.782348 |
We also provide some plotting utilities
from imagenet_x import plots
plots.model_comparison(factor_accs.reset_index(), fname="/path/to/save/fig.pdf|png")
Finally, we also provide a ImagenetX
pytorch dataset that loads the imagenet samples and appends the factors of validation as a one hot encoded vector of 16 elements.
from imagenet_x.evaluate import ImageNetX, get_vanilla_transform
# Declare dataset
imagenet_val_path = '/path/to/imagenet'
transforms = get_vanilla_transform()
dataset = ImageNetX(imagenet_val_path, transform=transforms)
See this notebook to run the previous commands and for a sample evaluation loop on a resnet-18.
Paper results
To reproduce plots for models in the paper
You need python>=3.8 for plots and evaluation to work
python -m imagenet_x plots [--use-tex]
Generate aggregate results from model predictions
python -m imagenet_x aggregate --model-dirs path/to/model/predictions
License
License file in root of directory.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file imagenet-x-0.0.7.tar.gz
.
File metadata
- Download URL: imagenet-x-0.0.7.tar.gz
- Upload date:
- Size: 4.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 319664e2bafcacb2bad913935487b6fe39758979dc6c410d23e5d72513620a66 |
|
MD5 | bebb524f47b69d4b61fa9dd7efdefab5 |
|
BLAKE2b-256 | 837d28639d89270edc2134edb1523c1882f0f9bd36c56434bdad2d2b00523282 |
File details
Details for the file imagenet_x-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: imagenet_x-0.0.7-py3-none-any.whl
- Upload date:
- Size: 4.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4308f6f97b4a0b708fedd1b8059ac26aea855efc9a0a0a81212a3d39998985ec |
|
MD5 | 4926a2c621bf69566ad5e5072e684c6a |
|
BLAKE2b-256 | 5e0c27b3fb8d4fc88eae6d2d889c43a180b8c81e597ac582734a6396d926118a |