Skip to main content

Imagenet factors of variation annotations

Project description

ImagenetX : Understanding model mistakes with factors of variation annotations

Code to load annotations, evaluate models and reproduce paper plots. See [paper], [website], [colab]

ImagenetX

Installation

If you just want to load the annotations :

pip install imagenet-x

Other installations:

  • Install from repo clone : pip install -e .
  • Reproduce plots from the paper and use dataset loader: pip install imagenet-x[all]

Usage

To load the annotations

from imagenet_x import load_annotations

annotations = load_annotations()

This will output the following table

file_name class multiple_objects background color brighter darker style larger smaller object_blocking person_blocking partial_view pattern pose shape subcategory texture justification one_word metaclass
ILSVRC2012_val_00004487.JPEG 762 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 close up of a pan fried sea bass. sea bass close up structure
ILSVRC2012_val_00003963.JPEG 292 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 sepia image of tiger digitally altered other
ILSVRC2012_val_00041992.JPEG 718 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 the bridge is brown rare view device
ILSVRC2012_val_00028056.JPEG 635 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 the magnetic compass is on the bronze container wood shape device

See this notebook for some sample images and annotations

One can also directly download the raw annotation files stored in the annotations folder. There are 4 json line files imagenet_x_[train|val]_[multi|top]_factor.jsonl that have entries such as the following:

{"file_name":"ILSVRC2012_val_00004487.JPEG","class":762,"multiple_objects":0,"background":1,"color":0,"brighter":0,"darker":0,"style":0,"larger":1,"smaller":0,"object_blocking":0,"person_blocking":0,"partial_view":0,"pattern":0,"pose":1,"shape":0,"subcategory":0,"texture":0,"justification":"close up of a pan fried sea bass. ","one_word":"sea bass close up"}

To generate plots for a new model

Generate the predictions of your model on the Imagenet Validation set in a csv file with 3 columns

file_name predicted_class predicted_probability
ILSVRC2012_val_00000293.JPEG 0 0.634764
ILSVRC2012_val_00002138.JPEG 391 0.360206
ILSVRC2012_val_00003014.JPEG 0 0.951837
ILSVRC2012_val_00006697.JPEG 0 0.999731
ILSVRC2012_val_00007197.JPEG 0 0.998473

Then store the list of model CSVs in a directory "path/to/model/predictions"

from imagenet_x import get_factor_accuracies, error_ratio

factor_accs = get_factor_accuracies("path/to/model/predictions")
error_ratios = error_ratio(factor_accs)

This gives the following table

Error ratios

model pose background pattern color smaller shape partial_view subcategory texture larger darker object_blocking person_blocking style brighter multiple_objects
DINO 0.726197 1.06799 0.927478 1.1779 1.54369 1.64228 1.12906 1.95486 2.15032 1.24805 1.46777 1.93051 2.03486 1.70361 0.924938 1.4244
ResNet50 0.694739 1.1417 0.771442 1.18883 1.49743 1.74423 1.13236 2.10548 2.39386 1.31592 1.71502 1.92327 2.17128 1.92798 1.16639 1.97389
SimCLR 0.774029 1.0867 0.911171 1.11955 1.54176 1.47304 1.01247 1.61814 2.0584 1.0121 1.12238 1.75552 2.03412 1.17686 0.879497 1.1907
ViT 0.74067 1.09097 0.862456 1.15164 1.64401 1.53992 0.917235 2.01538 2.04465 1.29087 1.83403 1.98596 1.93631 1.60108 0.782348

We also provide some plotting utilities

from imagenet_x import plots

plots.model_comparison(factor_accs.reset_index(), fname="/path/to/save/fig.pdf|png")

Finally, we also provide a ImagenetX pytorch dataset that loads the imagenet samples and appends the factors of validation as a one hot encoded vector of 16 elements.

from imagenet_x.evaluate import ImageNetX, get_vanilla_transform

# Declare dataset
imagenet_val_path = '/datasets01/imagenet_full_size/061417/val/'
transforms = get_vanilla_transform()
dataset = ImageNetX(imagenet_val_path, transform=transforms)

See this notebook to run the previous commands and for a sample evaluation loop on a resnet-18.

Paper results

To reproduce plots for models in the paper

You need python>=3.8 for plots and evaluation to work

python -m imagenet_x plots [--use-tex]

Generate aggregate results from model predictions

python -m imagenet_x aggregate --model-dirs path/to/model/predictions 

License

License file in root of directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imagenet-x-0.0.3.tar.gz (4.1 MB view details)

Uploaded Source

Built Distribution

imagenet_x-0.0.3-py3-none-any.whl (4.4 MB view details)

Uploaded Python 3

File details

Details for the file imagenet-x-0.0.3.tar.gz.

File metadata

  • Download URL: imagenet-x-0.0.3.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for imagenet-x-0.0.3.tar.gz
Algorithm Hash digest
SHA256 22a7820506aa60fa3907a959558aa5d68ec6ebda5f62e983027db9d8c7f6bff7
MD5 7f4dba131caffe3834d5aa1bedcd5970
BLAKE2b-256 309001413f0325873edc61edaf66fb6756b61bdd3dd0dd3c58073e2a263f1774

See more details on using hashes here.

File details

Details for the file imagenet_x-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: imagenet_x-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for imagenet_x-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f44bcd0901b25097a4a5115d9a8725ac63e94df7e910237f7773792beb4a1197
MD5 c524e8a9d100cd415edd7fa42663b848
BLAKE2b-256 ba8974bb6cc38e493d6e20e0f936adb34f7b90f4b4ee5d2d69a5c6ab4258453b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page