Skip to main content

Run image processing algorithms in a FastAPI server.

Project description

EPFL Center for Imaging logo

🪐 Imaging Server Kit

Run seamlessly interoperable algorithms on images using FastAPI.

Setup

Build the imaging-server-kit image with docker:

docker build -t imaging-server-kit:3.9 .

or build specific images:

docker build -t imaging-server-kit:3.10 --file Dockerfile-3.10 .
docker build -t imaging-server-kit:gpu --file Dockerfile-GPU .

Run an algorithm server

The server will be running on http://localhost:8000.

docker build -t serverkit/rembg .
docker run -it --rm -p 8000:8000 serverkit/rembg

Run an algorithm server with multiple algorithms

See deployment. The server will be running on http://localhost:7000.

Usage

Python client

Install the imaging-server-kit package with pip:

pip install git+https://gitlab.com/epfl-center-for-imaging/imaging-server-kit.git

Connect to an algorithm server and run algorithms from Python:

from imaging_server_kit import Client

client = Client()

client.connect("http://localhost:7000")

print(client.algorithms)
# [`rembg`, `stardist`, `sam2`]

data_tuple = client.run_algorithm(
    algorithm="rembg",
    image=(...),
    rembg_model_name="silueta",
)

More examples.

Napari client

Coming soon.

Web client

Coming soon.

QuPath client

Coming soon.

Fiji plugin

Coming soon.

Contributing

Contributions are very welcome.

License

This software is distributed under the terms of the BSD-3 license.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imaging_server_kit-0.0.1.tar.gz (62.9 kB view details)

Uploaded Source

Built Distribution

imaging_server_kit-0.0.1-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file imaging_server_kit-0.0.1.tar.gz.

File metadata

  • Download URL: imaging_server_kit-0.0.1.tar.gz
  • Upload date:
  • Size: 62.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for imaging_server_kit-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8b2bb38cd24b18070c59858ecc18185436a1e0b947e35629efea36703306ea2d
MD5 4fc642fa9717f1ad65933dfed1101550
BLAKE2b-256 f5cb70cbd3888b5b44c8e4c1fecdb8bcee1089cb9ab694e65ba80108517b5354

See more details on using hashes here.

File details

Details for the file imaging_server_kit-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for imaging_server_kit-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 af928d1a5924ff04a7cc00943f9422fdd8fb782a298d85a10e5c351d18b6491b
MD5 168815c9510904f3a183f0cdc1764353
BLAKE2b-256 92903677e003fb089ca24379b8935130afde7e1c63157a96e4d2416bdd855a7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page