Skip to main content

Python package for daily Tasks

Project description

from iman import *

1-plt

2-now() get time

3-F format floating point

4-D format int number

5-Write_List(MyList,Filename)

6-Write_Dic(MyDic,Filename)

7-Read(Filename) read txt file

8-Read_Lines(Filename) read txt file line by line and return list

9-Write(_str,Filename)

10-gf(pattern) Get files in a directory

11-gfa(directory_pattern , ext=”.”) Get Files in a Directory and SubDirectories

12-ReadE(Filename) Read Excel files

13-PM(dir) creat directory

14-PB(fname) get basename

15-PN(fname) get file name

16-PE(fname) get ext

17-PD(fname) get directory

18-PS(fname) get size

19-PJ(segments) Join Path

20-clear() clear cmd

21-os

22-np

23-RI(start_int , end_int , count=1) random int

24-RF(start_float , end_float , count=1) random float

25-RS(Arr) shuffle

26-LJ(job_file_name)

27-SJ(value , job_file_name)

28-LN(np_file_name)

29-SN(arr , np_file_name)

30-cmd(command , redirect=True) Run command in CMD

31-PX(fname) check existance of file

32-RC(Arr , size=1) Random Choice

33-onehot(data, nb_classes)

34-exe(pyfile) need pyinstaller

35-FWL(wavfolder , sr) Get Folder Audio Length

36-norm(vector) vector/magnitude(vector)

37-delete(pattern)

38-rename(fname , fout)

39-separate(pattern,folout) separate vocal from music

40-dll(fname) create a pyd file from py file

41-get_hard_serial()

42-mute_mic() on and off microphone

from iman import Audio

1-Read(filename,sr,start_from,dur,mono,ffmpeg_path,ffprobe_path) Read wav alaw and mp3 and others

2-Resample(data , fs, sr)

3-Write(filename, data ,fs)

4-frame(y)

5-split(y)

6-ReadT(filename, sr , mono=True) Read and resample wav file with torchaudio

7-VAD(y,top_db=40, frame_length=200, hop_length=80)

8-compress(fname_pattern , sr=16000 , ext=’mp3’ , mono=True ,ffmpeg_path=’c:\ffmpeg.exe’ , ofolder=None, worker=4)

9-clip_value(wav) return clipping percentage in audio file

10-WriteS(filename, data ,fs) Convert to Sterio

from iman import info

1-get() info about cpu and gpu need torch

2-cpu() get cpu percentage usage

3-gpu() get gpu memory usage

4-memory() get ram usage GB

5-plot(fname=”log.txt” , delay=1)

from iman import metrics

1-EER(lab,score)

2-cosine_distance(v1,v2)

3-roc(lab,score)

4-wer(ref, hyp)

5-cer(ref, hyp)

6-wer_list(ref_list , hyp_list)

7-cer_list(ref_list , hyp_list)

8-DER(ref_list , res_list , file_dur=-1 , sr=8000) Detection Error Rate

from iman import tsne

1-plot(fea , label)

from iman import xvector

1-xvec,lda_xvec,gender = get(filename , model(model_path , model_name , model_speaker_num))

from iman import web

1-change_wallpaper()

2-dl(url)

3-links(url , filter_text=None)

4-imgs(url , filter_text=None)

from iman import matlab

1-np2mat(param , mat_file_name)

2-dic2mat(param , mat_file_name)

3-mat2dic (mat_file_name)

from iman import Features

1- mfcc_fea,mspec,log_energy = mfcc.SB.Get(wav,sample_rate) Compute MFCC with speechbrain - input must read with torchaudio

2-mfcc.SB.Normal(MFCC) Mean Var Normalization Utt with speechbrain

3- mfcc_fea,log_energy = mfcc.LS.Get(wav,sample_rate,le=False) Compute MFCC with Librosa - input is numpy array

4-mfcc.LS.Normal(MFCC , win_len=150) Mean Var Normalization Local 150 left and 150 right

from iman import AUG

1-Add_Noise(data , noise , snr)

2-Add_Reverb( data , rir)

3-Add_NoiseT(data , noise , snr) (torchaudio)

4-Add_ReverbT( data , rir) (torchaudio)

5-mp3(fname , fout,sr_out,ratio,ffmpeg_path=’c:\ffmpeg.exe’)

6-speed(fname,fout,ratio,ffmpeg_path=’c:\ffmpeg.exe’)

7-volume(fname ,fout,ratio,ffmpeg_path=’c:\ffmpeg.exe’)

from iman.[sad_torch_mfcc | sad_tf] import *

seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”c:\sad_model_pytorch.pth” , tq=1,ffmpeg_path=’c:\ffmpeg.exe’,complete_output=False , device=’cuda’,input_type=’file’) TORCH

seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=16000 , model_path=”c:\keras_speech_music_noise_cnn.hdf5”,gender_path=”c:\keras_male_female_cnn.hdf5”,ffmpeg_path=’c:\ffmpeg.exe’,detect_gender=False,complete_output=False,device=’cuda’,input_type=’file’) TensorFlow

isig,wav,mfcc = seg(fname) mfcc output Just in torch model

nmfcc = filter_fea(isig , mfcc , sr , max_time) Just in torch model

mfcc = MVN(mfcc) Just in torch model

isig = filter_output(isig , max_silence ,ignore_small_speech_segments , max_speech_len ,split_speech_bigger_than) Do when complete_output=False

seg2aud(isig , filename)

seg2json(isig)

seg2Gender_Info(isig)

seg2Info(isig)

wav_speech , wav_noise = filter_sig(isig , wav , sr) Get Speech and Noise Parts of file - Do when complete_output=False

from sad_tf.segmentero import Segmenter to use onnx models - need to install onnxruntime

from iman.sad_torch_mfcc_speaker import *

seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”c:\sad_model_pytorch.pth” , max_time=120(sec) , tq=1,ffmpeg_path=’c:\ffmpeg.exe’, device=’cuda’ , pad=False) TORCH - max_time in second to split fea output mfcc, len(sec) = seg(fname) mfcc pad to max_time length if pad=True

from iman.sad_tf_mlp_speaker import *

seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”sad_tf_mlp.h5” , max_time=120(sec) , tq=1,ffmpeg_path=’c:\ffmpeg.exe’, device=’cuda’ , pad=False) Tensorflow (small mlp model) - max_time in second to split fea output mfcc, len(sec) = seg(fname) mfcc pad to max_time length if pad=True

from iman import Report Tensorboard Writer

r=Report.rep(log_dir=None)

r.WS(_type , _name , value , itr) Add_scalar

r.WT(_type , _name , _str , itr) Add_text

r.WG(pytorch_model , example_input) Add_graph

r.WI(_type , _name , images , itr) Add_image

from iman import par

if (__name__ == ‘__main__’):

res = par.par(files , func , worker=4 , args=[]) def func(fname , _args): ...

from iman import Image

Image.convert(fname_pattern ,ext =’jpg’,ofolder=None , w=-1 , h=-1,level=100, worker=4,ffmpeg_path=’c:\ffmpeg.exe’)

Image.resize(fname_pattern ,ext =’jpg’,ofolder=None , w=2 , h=2, worker=4,ffmpeg_path=’c:\ffmpeg.exe’) resize to 1/h and 1/w

from iman import Boors

Boors.get(sahm) get sahm info

from iman import Text

norm = Text.normal(“c:\Replace_List.txt”)

norm.rep(str)

norm.from_file(filename ,file_out=None)

from iman.num2fa import words

words(number)

from iman import examples

examples.items get items in examples folder

examples.help(topic)

from iman import Rar

1-rar(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)

2-zip(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)

3-unrar(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)

4-unzip(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)

from iman import Enhance

1-Enhance.Dereverb(pattern , out_fol , sr = 16000, batchsize=16 , device=”cuda” ,model_path=r”C:\UVR-DeEcho-DeReverb.pth”)

2-Enhance.Denoise(pattern , out_fol , sr = 16000, batchsize=16 , device=”cuda” ,model_path=r”C:UVR-DeNoise-Lite.pth”)

from iman.tf import *

1-flops(model) get flops of tf model

2-param(model) return parameter number of tf model

3-paramp(model) return parameter number of tf model and print model layers

4-gpu() return True if available

5-gpun() return number of gpus

6-limit() Tf model only allocate as much GPU memory based on runtime allocations

from iman.torch import *

1-param(model) return parameter number and trainable number of torch model

2-paramp(model) return parameter number of torch model and print model layers

3-layers(model) return layers of torch model

4-gpu() return True if available

5-gpun() return number of gpus

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

iman-1.0.22.tar.gz (115.5 kB view details)

Uploaded Source

Built Distribution

iman-1.0.22-py3-none-any.whl (157.0 kB view details)

Uploaded Python 3

File details

Details for the file iman-1.0.22.tar.gz.

File metadata

  • Download URL: iman-1.0.22.tar.gz
  • Upload date:
  • Size: 115.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.2

File hashes

Hashes for iman-1.0.22.tar.gz
Algorithm Hash digest
SHA256 c07b0f02a277c86cda4bfc245f1e8d6bd5ed7020d932bbbf72187013671fc5b9
MD5 c70ef95c59c1a95e6bdf536c7fe2897b
BLAKE2b-256 a158d24ea23e088b1e9e8cb7635127c7eeb65036cbd9453dc4ed3c299ee6e4cd

See more details on using hashes here.

File details

Details for the file iman-1.0.22-py3-none-any.whl.

File metadata

  • Download URL: iman-1.0.22-py3-none-any.whl
  • Upload date:
  • Size: 157.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.2

File hashes

Hashes for iman-1.0.22-py3-none-any.whl
Algorithm Hash digest
SHA256 b1bf1cc1e509bbb631f4b58c6dcdb95e5fc62f52def233017a4f1daca82c75ed
MD5 5e8518f1763e3a3100ad0242e7af1213
BLAKE2b-256 0fe155fb797078a4c46344cc69560dee9318c67e95a1e7a53610a7fe415da435

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page