Python package for daily Tasks
Project description
from iman import *
1-plt
2-now() get time
3-F format floating point
4-D format int number
5-Write_List(MyList,Filename)
6-Write_Dic(MyDic,Filename)
7-Read(Filename) read txt file
8-Read_Lines(Filename) read txt file line by line and return list
9-Write(_str,Filename)
10-gf(pattern) Get files in a directory
11-gfa(directory_pattern , ext=”.”) Get Files in a Directory and SubDirectories
12-ReadE(Filename) Read Excel files
13-PM(dir) creat directory
14-PB(fname) get basename
15-PN(fname) get file name
16-PE(fname) get ext
17-PD(fname) get directory
18-PS(fname) get size
19-PJ(segments) Join Path
20-clear() clear cmd
21-os
22-np
23-RI(start_int , end_int , count=1) random int
24-RF(start_float , end_float , count=1) random float
25-RS(Arr) shuffle
26-LJ(job_file_name)
27-SJ(value , job_file_name)
28-LN(np_file_name)
29-SN(arr , np_file_name)
30-cmd(command , redirect=True) Run command in CMD
31-PX(fname) check existance of file
32-RC(Arr , size=1) Random Choice
33-onehot(data, nb_classes)
34-exe(pyfile) need pyinstaller
35-FWL(wavfolder , sr) Get Folder Audio Length
36-norm(vector) vector/magnitude(vector)
37-delete(pattern)
38-rename(fname , fout)
39-separate(pattern,folout) separate vocal from music
40-dll(fname) create a pyd file from py file
41-get_hard_serial()
42-mute_mic() on and off microphone
from iman import Audio
1-Read(filename,sr,start_from,dur,mono,ffmpeg_path,ffprobe_path) Read wav alaw and mp3 and others
2-Resample(data , fs, sr)
3-Write(filename, data ,fs)
4-frame(y)
5-split(y)
6-ReadT(filename, sr , mono=True) Read and resample wav file with torchaudio
7-VAD(y,top_db=40, frame_length=200, hop_length=80)
8-compress(fname_pattern , sr=16000 , ext=’mp3’ , mono=True ,ffmpeg_path=’c:\ffmpeg.exe’ , ofolder=None, worker=4)
9-clip_value(wav) return clipping percentage in audio file
10-WriteS(filename, data ,fs) Convert to Sterio
from iman import info
1-get() info about cpu and gpu need torch
2-cpu() get cpu percentage usage
3-gpu() get gpu memory usage
4-memory() get ram usage GB
5-plot(fname=”log.txt” , delay=1)
from iman import metrics
1-EER(lab,score)
2-cosine_distance(v1,v2)
3-roc(lab,score)
4-wer(ref, hyp)
5-cer(ref, hyp)
6-wer_list(ref_list , hyp_list)
7-cer_list(ref_list , hyp_list)
8-DER(ref_list , res_list , file_dur=-1 , sr=8000) Detection Error Rate
from iman import tsne
1-plot(fea , label)
from iman import xvector
1-xvec,lda_xvec,gender = get(filename , model(model_path , model_name , model_speaker_num))
from iman import web
1-change_wallpaper()
2-dl(url)
3-links(url , filter_text=None)
4-imgs(url , filter_text=None)
from iman import matlab
1-np2mat(param , mat_file_name)
2-dic2mat(param , mat_file_name)
3-mat2dic (mat_file_name)
from iman import Features
1- mfcc_fea,mspec,log_energy = mfcc.SB.Get(wav,sample_rate) Compute MFCC with speechbrain - input must read with torchaudio
2-mfcc.SB.Normal(MFCC) Mean Var Normalization Utt with speechbrain
3- mfcc_fea,log_energy = mfcc.LS.Get(wav,sample_rate,le=False) Compute MFCC with Librosa - input is numpy array
4-mfcc.LS.Normal(MFCC , win_len=150) Mean Var Normalization Local 150 left and 150 right
from iman import AUG
1-Add_Noise(data , noise , snr)
2-Add_Reverb( data , rir)
3-Add_NoiseT(data , noise , snr) (torchaudio)
4-Add_ReverbT( data , rir) (torchaudio)
5-mp3(fname , fout,sr_out,ratio,ffmpeg_path=’c:\ffmpeg.exe’)
6-speed(fname,fout,ratio,ffmpeg_path=’c:\ffmpeg.exe’)
7-volume(fname ,fout,ratio,ffmpeg_path=’c:\ffmpeg.exe’)
from iman.[sad_torch_mfcc | sad_tf] import *
seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”c:\sad_model_pytorch.pth” , tq=1,ffmpeg_path=’c:\ffmpeg.exe’,complete_output=False , device=’cuda’,input_type=’file’) TORCH
seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=16000 , model_path=”c:\keras_speech_music_noise_cnn.hdf5”,gender_path=”c:\keras_male_female_cnn.hdf5”,ffmpeg_path=’c:\ffmpeg.exe’,detect_gender=False,complete_output=False,device=’cuda’,input_type=’file’) TensorFlow
isig,wav,mfcc = seg(fname) mfcc output Just in torch model
nmfcc = filter_fea(isig , mfcc , sr , max_time) Just in torch model
mfcc = MVN(mfcc) Just in torch model
isig = filter_output(isig , max_silence ,ignore_small_speech_segments , max_speech_len ,split_speech_bigger_than) Do when complete_output=False
seg2aud(isig , filename)
seg2json(isig)
seg2Gender_Info(isig)
seg2Info(isig)
wav_speech , wav_noise = filter_sig(isig , wav , sr) Get Speech and Noise Parts of file - Do when complete_output=False
from sad_tf.segmentero import Segmenter to use onnx models - need to install onnxruntime
from iman.sad_torch_mfcc_speaker import *
seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”c:\sad_model_pytorch.pth” , max_time=120(sec) , tq=1,ffmpeg_path=’c:\ffmpeg.exe’, device=’cuda’ , pad=False) TORCH - max_time in second to split fea output mfcc, len(sec) = seg(fname) mfcc pad to max_time length if pad=True
from iman.sad_tf_mlp_speaker import *
seg = Segmenter(batch_size, vad_type=[‘sad’|’vad’] , sr=8000 , model_path=”sad_tf_mlp.h5” , max_time=120(sec) , tq=1,ffmpeg_path=’c:\ffmpeg.exe’, device=’cuda’ , pad=False) Tensorflow (small mlp model) - max_time in second to split fea output mfcc, len(sec) = seg(fname) mfcc pad to max_time length if pad=True
from iman import Report Tensorboard Writer
r=Report.rep(log_dir=None)
r.WS(_type , _name , value , itr) Add_scalar
r.WT(_type , _name , _str , itr) Add_text
r.WG(pytorch_model , example_input) Add_graph
r.WI(_type , _name , images , itr) Add_image
from iman import par
if (__name__ == ‘__main__’):
res = par.par(files , func , worker=4 , args=[]) def func(fname , _args): ...
from iman import Image
Image.convert(fname_pattern ,ext =’jpg’,ofolder=None , w=-1 , h=-1,level=100, worker=4,ffmpeg_path=’c:\ffmpeg.exe’)
Image.resize(fname_pattern ,ext =’jpg’,ofolder=None , w=2 , h=2, worker=4,ffmpeg_path=’c:\ffmpeg.exe’) resize to 1/h and 1/w
from iman import Boors
Boors.get(sahm) get sahm info
from iman import Text
norm = Text.normal(“c:\Replace_List.txt”)
norm.rep(str)
norm.from_file(filename ,file_out=None)
from iman.num2fa import words
words(number)
from iman import examples
examples.items get items in examples folder
examples.help(topic)
from iman import Rar
1-rar(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)
2-zip(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)
3-unrar(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)
4-unzip(fname , out=”” , rar_path=r”C:\Program Files\WinRAR\winrar.exe”)
from iman import Enhance
1-Enhance.Dereverb(pattern , out_fol , sr = 16000, batchsize=16 , device=”cuda” ,model_path=r”C:\UVR-DeEcho-DeReverb.pth”)
2-Enhance.Denoise(pattern , out_fol , sr = 16000, batchsize=16 , device=”cuda” ,model_path=r”C:UVR-DeNoise-Lite.pth”)
from iman.tf import *
1-flops(model) get flops of tf model
2-param(model) return parameter number of tf model
3-paramp(model) return parameter number of tf model and print model layers
4-gpu() return True if available
5-gpun() return number of gpus
6-limit() Tf model only allocate as much GPU memory based on runtime allocations
from iman.torch import *
1-param(model) return parameter number and trainable number of torch model
2-paramp(model) return parameter number of torch model and print model layers
3-layers(model) return layers of torch model
4-gpu() return True if available
5-gpun() return number of gpus
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file iman-1.0.22.tar.gz
.
File metadata
- Download URL: iman-1.0.22.tar.gz
- Upload date:
- Size: 115.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c07b0f02a277c86cda4bfc245f1e8d6bd5ed7020d932bbbf72187013671fc5b9 |
|
MD5 | c70ef95c59c1a95e6bdf536c7fe2897b |
|
BLAKE2b-256 | a158d24ea23e088b1e9e8cb7635127c7eeb65036cbd9453dc4ed3c299ee6e4cd |
File details
Details for the file iman-1.0.22-py3-none-any.whl
.
File metadata
- Download URL: iman-1.0.22-py3-none-any.whl
- Upload date:
- Size: 157.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1bf1cc1e509bbb631f4b58c6dcdb95e5fc62f52def233017a4f1daca82c75ed |
|
MD5 | 5e8518f1763e3a3100ad0242e7af1213 |
|
BLAKE2b-256 | 0fe155fb797078a4c46344cc69560dee9318c67e95a1e7a53610a7fe415da435 |